
Multimedia Playlist Library
Reference

QNX® SDK for Apps and Media 1.1

©2013–2015, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: March 31, 2015

Contents
About This Reference..5

Typographical conventions..6

Technical support...8

Chapter 1: Multimedia Playlist Library Overview...9
Architecture of libmmplaylist..10

Plugins...11

Plugin ratings...11

Included plugins...12

Playlist sessions...13

Chapter 2: Configuration File...15

Chapter 3: Multimedia Playlist API...17
mmplaylist_close()...18

mmplaylist_current_pos_get()..19

mmplaylist_current_pos_set()..20

mmplaylist_entry_next_get()..21

mmplaylist_entry_release()..23

mmplaylist_entry_t...24

mmplaylist_entry_validated_t..25

mmplaylist_error_info_t..26

mmplaylist_error_type_t..27

mmplaylist_fmt_list_t...29

mmplaylist_init()..30

mmplaylist_last_error_get()...31

mmplaylist_num_entries_get()...32

mmplaylist_open()..33

mmplaylist_plps_list()..35

mmplaylist_props_get()...36

mmplaylist_props_t..37

mmplaylist_seek_offset_t..38

mmplaylist_supported_fmts_get()..39

mmplaylist_supported_fmts_release()...40

mmplaylist_t..41

mmplaylist_terminate()...42

mmplaylist_validation_fn_t..43

mmplaylist_validation_mode_t...44

Index...45

Multimedia Playlist Library Reference

Contents

About This Reference

The Multimedia Playlist Library Reference is aimed at developers who want to write applications that

use the libmmplaylist library to read playlist files and provide users with playlist functions such as
track selection and forward or backward movement of the playback position.

This table may help you find what you need in this reference:

Go to:To find out about:

Multimedia Playlist Library

Overview (p. 9)

The purpose and capabilities of libmmplaylist

Included plugins (p. 12)The list of Playlist Plugins (PLPs) included with libmmplaylist

Configuration File (p. 15)The libmmplaylist configuration file, which lists the library
paths and configuration settings of supported plugins

Multimedia Playlist API (p. 17)Using the Multimedia Playlist API to establish playlist sessions,

seek to playlist positions, retrieve metadata, and obtain error

information

Copyright © 2015, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have unwanted or
undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your
files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited6

About This Reference

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited 7

About This Reference

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

Copyright © 2015, QNX Software Systems Limited8

About This Reference

http://www.qnx.com

Chapter 1
Multimedia Playlist Library Overview

The multimedia playlist library, libmmplaylist, reads playlists on media devices and allows clients to
seek to and play individual tracks within playlists.

Playlists are track sequences that store track metadata and ordering information. Playlists come in

many different formats and typically contain either the URL of a source media stream or a set of URLs

or filepaths of individual tracks.

By supporting playlists, your media applications can:

• play multiple tracks in sequence

• navigate between or within tracks

• skip or repeat tracks

Other multimedia services use libmmplaylist to support playlists. For instance, the mm-sync service
uses this library to synchronize playlists and even allows users to define a custom configuration for

libmmplaylist. Also, the Playlist engine plugin inmm-renderer uses the library to manage playback
when users attach an input whose type is "playlist".

Media applications can use mm-renderer features such as repeat and position seek for basic playlist
management. However, if you want greater control over playlists, you can write applications that use

libmmplaylist directly. The library provides functionality to:

• explore playlists from the HMI without having to synchronize them to databases

• parse playlists to locate and copy media files that store either individual tracks or playlist information

to persistent storage

• seek to relative or absolute playlist positions

• obtain summary information on a group of related tracks, such as the total runtime for an album

The libmmplaylist library provides a common, high-level interface for supporting playback and track
seeking in playlists of different formats. With this design, application writers must learn only one set

of commands to manage many types of playlists.

Copyright © 2015, QNX Software Systems Limited 9

Architecture of libmmplaylist

The libmmplaylist library uses a plugin architecture in which each plugin can manage a particular
playlist format. When a client opens a session on a playlist, the library determines which plugin is

most suited to manage the playlist and uses that selected plugin to carry out subsequent playlist

operations.

The library is implemented in three layers:

Playlist management

This layer:

• initializes the library by loading the character-converter service and determining the

path of the configuration file

• opens playlist sessions and returns session handles

• loads and validates playlist entries and performs character encoding

• reports the number of playlist entries and the position (index) of the currently playing

entry

• updates the playlist position after validating the new position requested by the client

Plugin management

This layer:

• reads the configuration file to learn the plugin filenames and configuration settings

• loads, validates, and unloads plugins

• determines which plugins support a given playlist and ranks those plugins

• provides configuration settings to the playlist management layer to help it perform

character encoding

Plugins

This layer consists of many playlist plugins that:

• rate themselves on their ability to support a particular playlist

• open and close playlist sessions when requested by the playlist management layer

• provide basic operations for navigating and retrieving information from playlists

• may provide more efficient methods for some navigation and seek operations

The plugin-based architecture makes it easy for future releases of libmmplaylist to support
additional playlist formats while clients continue to use the same commands to manage

playlists.

Copyright © 2015, QNX Software Systems Limited10

Multimedia Playlist Library Overview

Plugins

Playlist plugins (PLPs) are libmmplaylist components that manage playlists of specific formats. PLPs
abstract the parsing of playlists by implementing a standard set of functions that higher layers of

libmmplaylist can call to navigate and read information from playlists.

When the playlist management layer forwards a user request to open a session on a playlist, the selected

plugin invokes the appropriate lower-level service to access and begin parsing the playlist. Depending

on the playlist format, this service could be an XML reader, a database engine, or a media streamer.

The plugin stores the parser state in an internal structure. This way, the plugin can resume reading

the playlist from the same location in the file or database result set that it read up to in the last playlist

operation. Common operations such as retrieving the next playlist entry (track) can be implemented

more efficiently because the plugin doesn't have to read through the entire playlist each time the track

changes.

All PLPs implement functions to:

• open and close playlist sessions

• rewind a playlist to the beginning

• move to the next entry and return its information

• rate themselves on their ability to manage a particular playlist

Some PLPs also implement functions to:

• report the playlist's defined character encoding to the playlist management layer

• provide fast methods for getting the number of playlist entries and for getting and setting the

playlist position

• report detailed information on the last error encountered (useful for debugging)

Plugin ratings

When the user opens a session on a playlist, libmmplaylist queries all available PLPs for their ratings
on managing the specified playlist. The “available” PLPs are those that were successfully loaded during

library initialization. Their ratings measure their individual abilities to manage the playlist that the user

is opening. PLP ratings range from 0, which means the plugin doesn't support the playlist, to 100,

which means the plugin is a perfect choice for managing it.

Typically, a plugin examines the playlist extension and if that extension indicates a format that it

supports, the plugin returns its preset, nonzero rating to indicate that it can parse the playlist. If the

extension indicates an unsupported format, the plugin returns a rating of 0.

When libmmplaylist has obtained all the PLP ratings, it sorts the PLPs from highest- to lowest-rated,
discarding references to PLPs with a rating of 0. The library then goes through the sorted list and tries

to open a session with each plugin in turn. This way, libmmplaylist picks the highest-rated plugin to
handle all operations on that same playlist.

The libmmplaylist library assigns default ratings for all PLPs but you can overwrite these settings in
the configuration file (p. 15).

Copyright © 2015, QNX Software Systems Limited 11

Multimedia Playlist Library Overview

Included plugins

The libmmplaylist library is shipped with many plugins capable of parsing various playlist formats:

asx

Files of the following types:

• Microsoft Advanced Streaming Redirector (.asx) files

• Windows Media Audio Redirector (.wax) files

• Windows Media Video Redirector (.wvx) files

b4s

Playlist files for WinAmp versions 3 and later (.b4s files)

filelist

String listings of media files, with entries separated by configurable delimiters

iTunes

XML files created by iTunes (iTunes Library.xml)

m3u

MP3 playlist (.m3u) files

mediafs

Playlist files that can be converted into directories containing references to the real media

files (e.g., MP3 files). This plugin supports the .pla extension.

pls

Text-based playlist (.pls) files

qdb

Result sets from SQL queries made against QDB databases

rmp

RealAudio audio (.rmp) files

wpl

Windows Media Player Playlist (.wpl) files

xspf

XML Shareable Playlist Format (.xspf) files

Copyright © 2015, QNX Software Systems Limited12

Multimedia Playlist Library Overview

Playlist sessions

To manage a playlist, a client must open a session on the playlist before it can seek to and play tracks

or extract metadata.

To open a playlist session, the client must name the media that stores the playlist and provide the

playlist's path. The client may also instruct libmmplaylist to convert the playlist entries to a certain
character encoding or to validate the entries. This latter task refers to how the library identifies files

that correspond to playlist entries; see the mmplaylist_open() (p. 33) function for details on specifying

entry validation.

When libmmplaylist successfully opens a playlist session, the mmplaylist_open() call returns a session

handle. Clients must provide this handle in subsequent libmmplaylist API calls to operate on the same
playlist (e.g., to seek to different positions with mmplaylist_current_pos_get() (p. 19)).

The session handle contains a reference to the plugin chosen to manage the playlist, which allows the

library to reuse that same plugin for all playlist operations. The handle also stores the preferences for

encoding and validation as well as a reference (if applicable) to the active character converter used

for encoding playlist entries. Storing these preferences in the session handle allows libmmplaylist to
support multiple playlists concurrently because the preferences of individual sessions are stored

separately and hence, they can differ from each other.

The encoding and validation preferences are used in retrieving the next playlist entry when the client

calls mmplaylist_entry_next_get() (p. 21). Sometimes, libmmplaylist can return playlist entries with a
different encoding than what's defined in the preferences. For instance, m3u playlists are text files
that don't have an official character set. These files are often encoded with the ISO-8859-1 character

set; however, in many geographic regions, m3u files use alternative encodings. Because m3u doesn't
have a mechanism for communicating the encoding used, the m3u plugin might report the encoding

as ISO-8859-1 while the actual encoding differs.

When it's finished using a playlist, the client must close the playlist session by calling

mmplaylist_close() (p. 18).

Concurrent sessions

Clients can open as many concurrent playlist sessions in libmmplaylist as they like, including different
sessions on the same playlist (by making distinct mmplayist_open() calls with the same playlist path).

Multiple concurrent sessions allow media applications to support multitasking with playlists. For

example, an application can display browsing information for all the playlists on a device while at the

same copying or playing tracks from one of those playlists.

CAUTION: Multithreaded clients can open and use common playlist sessions from different
threads. However, clients that share session handles between threads must carefully guard

against concurrent access to those handles. For example, if two threads call

mmplaylist_entry_next_get() on the same session, the playlist position gets incremented once

for each call, meaning that one thread could alter the playlist state for the other thread.

Copyright © 2015, QNX Software Systems Limited 13

Multimedia Playlist Library Overview

Obtaining error information

While a session is active, the client can call mmplaylist_last_error_get() (p. 31) to obtain the numeric

error code of the last error that occurred on that session. We recommend that your client check the

return values of all API calls. If any value indicates an error, the client can retrieve the error code and

use it to help recover.

Copyright © 2015, QNX Software Systems Limited14

Multimedia Playlist Library Overview

Chapter 2
Configuration File

The libmmplaylist configuration file lists the playlist plugins (PLPs) that the library can use to manage
playlists as well as the configuration settings for those plugins.

The libmmplaylist library is shipped with a default configuration file. You can modify this included file
or create your own. When calling mmplaylist_init() (p. 30) to initialize the library, your client must

supply either the full path of another configuration file or a path of NULL to use the default file. In

this second case, the library first searches the path given in the MM_PLAYLIST_CONFIG environment

variable or if this variable isn't defined, the library searches the hardcoded default path of

/etc/mm/mm-playlist.conf.

Redefining MM_PLAYLIST_CONFIG lets you use a different configuration file as the default.

This is useful when launching applications such as mm-renderer that use libmmplaylist but
don't allow you to set the configuration path.

In any configuration file, each section defines settings for an individual PLP and must begin with a

line like this:

[plugin]

The PLP settings are listed on the lines that follow, one per line. A dll setting is required in every

section to name the library file that implements the PLP. A setting is specified by stating a field name,

followed by an equal sign (=), followed by the field value. For example, the following lines name the

library file and assign a rating of 20 for the iTunes plugin:

[plugin]

dll=mm-plp-itunes.so

rating=20

You can also place comments in the configuration file by starting lines with the number sign (#).

Default configuration file

The contents of the default configuration file look like this:

libmmplaylist config file

[plugin]

dll=mm-plp-qdb.so

[plugin]

dll=mm-plp-m3u.so

[plugin]

dll=mm-plp-asx.so

Copyright © 2015, QNX Software Systems Limited 15

[plugin]

dll=mm-plp-itunes.so

[plugin]

dll=mm-plp-pls.so

[plugin]

dll=mm-plp-rmp.so

[plugin]

dll=mm-plp-wpl.so

[plugin]

dll=mm-plp-xspf.so

[plugin]

dll=mm-plp-b4s.so

[plugin]

dll=mm-plp-mediafsdir.so

[plugin]

dll=mm-plp-filelist.so

The filelist delimiter can be changed here noting that

characters starting with '\' will be converted to

their escaped equivalent if they exist. If \xZZ is

used, the ASCII value for the two hexadecimal digits

following the 'x' character will be used. Because PPS

treats newlines as a special character, \n will not

be escaped. Examples:

#

delimiter=\x1e -- Hex character 0x1e (default).

delimiter=\t\t -- Two tabs

Copyright © 2015, QNX Software Systems Limited16

Configuration File

Chapter 3
Multimedia Playlist API

The Multimedia Playlist API exposes the constants, data types (including enumerations), and functions

that client applications can use to open playlist sessions, seek to specific track positions, and retrieve

playlist metadata.

Before it can access any playlists, the client must first initialize the libmmplaylist library by calling
mmplaylist_init() (p. 30), which loads the playlist plugins (PLPs) listed in the configuration file.

The client can then open sessions on playlists by calling mmplaylist_open() (p. 33). In each

mmplaylist_open() call, the client can specify the character encoding and validation to perform on

each entry that's retrieved by an mmplaylist_entry_next_get() (p. 21) call.

Media applications can read playlist information for many reasons. For example, an application could

extract the track URLs of a playlist's entries and pass these URLs to mm-renderer to play the tracks
one by one. Or, it could retrieve the number of entries in all the playlists on a mediastore and display

this information to the user as a type of playlist inventory.

The mmplaylist_props_get() (p. 36) function allows the client to learn which operations (e.g., seeking

to a new position, getting the number of playlist entries) have fast implementations in the current

session and to then optimize the user experience by avoiding slow operations.

When it's finished using a playlist, the client can close the corresponding playlist session by calling

mmplaylist_close() (p. 18). When it's finished using libmmplaylist altogether (e.g., during shutdown),
the client must call mmplaylist_terminate() (p. 42) to unload the PLPs used by the library.

Copyright © 2015, QNX Software Systems Limited 17

mmplaylist_close()

Close a playlist session

Synopsis:

#include <mm/mmplaylist.h>

int mmplaylist_close(mmplaylist_t *pl)

Arguments:

pl

A valid session handle.

Library:
libmmplaylist

Description:

This function closes an active playlist session. If an error occurs, the function returns an error code

but the session handle still becomes invalid. The application should not, under any circumstances,

use the handle after calling this function.

Returns:

0

Success. This value is equivalent to the mmplaylist_ok error code.

>0

An mmplaylist_error_type_t (p. 27) constant indicating the error that occurred (call
mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited18

Multimedia Playlist API

mmplaylist_current_pos_get()

Get the position of the current playlist entry

Synopsis:

#include <mm/mmplaylist.h>

int mmplaylist_current_pos_get(mmplaylist_t *pl)

Arguments:

pl

A valid session handle.

Library:
libmmplaylist

Description:

This function gets the position of the current playlist entry. When the current position is at the end of

the playlist, this function returns -1 and sets an error code of mmplaylist_end_of_playlist.

Returns:

>=0

The position of the current entry.

-1

An error occurred (call mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited 19

Multimedia Playlist API

mmplaylist_current_pos_set()

Jump to a position in the playlist

Synopsis:

#include <mm/mmplaylist.h>

int mmplaylist_current_pos_set(mmplaylist_t *pl,

int new_pos,

mmplaylist_seek_offset_t whence)

Arguments:

pl

A valid session handle.

new_pos

The new position in the playlist to jump to. Negative numbers are allowed for moving

backwards.

whence

The reference point for the new position (see mmplaylist_seek_offset_t (p. 38) for the list
of acceptable values).

Library:
libmmplaylist

Description:

This function jumps to a position in the playlist. The new position is specified as the index of the entry

that you're seeking to. This operation can be very expensive, so the application should first check the

value of the seek_fast field in the mmplaylist_props_t (p. 37) structure to determine whether this
operation can be completed quickly.

Returns:

0

Success.

-1

An error occurred (call mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited20

Multimedia Playlist API

mmplaylist_entry_next_get()

Get the next entry from a playlist

Synopsis:

#include <mm/mmplaylist.h>

int mmplaylist_entry_next_get(mmplaylist_t *pl,

mmplaylist_entry_t **entry)

Arguments:

pl

A valid session handle.

entry

A pointer for storing a reference to the entry pointer defined by this function.

Library:
libmmplaylist

Description:

This function gets the next entry from a playlist. The data structure filled in by this function contains

the next entry from the playlist file and a flag field that describes the properties of this entry.

When an application requests the next playlist entry, the selected plugin:

1. Retrieves the next entry from the playlist file.

2. Identifies and possibly modifies the character encoding of the entry, based on the preferences
given when the playlist session was created. The actual encoding of the playlist entry returned to

the caller might differ from what's specified in the preferences (see “Playlist sessions (p. 13)” for

an explanation).

3. If necessary, attempts to identify the entry's track file by validating the entry with either the specified
callback or the stat() function (see mmplaylist_entry_validated_t (p. 25) for the list of properties
that the validation function can set).

This last step repeats until either the callback determines that the entry is valid or the playlist manager

has iterated through the character conversion and/or validation routines. At this point, the function

returns the raw entry to the caller.

Callers must usemmplaylist_entry_release() (p. 23) to free the memory for a playlist entry when they're

done with it. They must not free the memory themselves; doing so will result in unpredictable behavior.

Returns:

1

The entry was successfully retrieved.

Copyright © 2015, QNX Software Systems Limited 21

Multimedia Playlist API

http://www.qnx.com/developers/docs/qnxcar2/topic/com.qnx.doc.neutrino.lib_ref/topic/s/stat.html?cp=5_1_20_170

0

The end of the playlist was reached.

-1

An error occurred (call mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited22

Multimedia Playlist API

mmplaylist_entry_release()

Release memory for a playlist entry

Synopsis:

#include <mm/mmplaylist.h>

int mmplaylist_entry_release(mmplaylist_t *pl,

mmplaylist_entry_t *entry)

Arguments:

pl

A valid session handle.

entry

A pointer to the entry whose memory is being released (freed).

Library:
libmmplaylist

Description:

This function releases the memory for a playlist entry. This memory was allocated in an earlier

mmplaylist_entry_next_get() (p. 21) call.

Returns:

0

Success.

-1

An error occurred (call mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited 23

Multimedia Playlist API

mmplaylist_entry_t

Playlist entry information

Synopsis:

#include <mm/mmplaylist.h>

typedef struct mmplaylist_entry {

uint32_t props;

char name[];

} mmplaylist_entry_t;

Data:

uint32_t props

The properties of the entry.

char name

The extracted entry. This string is null-terminated.

Library:
libmmplaylist

Description:

The mmplaylist_entry_t data structure stores a playlist entry. This structure is filled in and returned
to the client by mmplaylist_entry_next_get() (p. 21). When finished using this information, the client

must free the structure by calling mmplaylist_entry_release() (p. 23).

Copyright © 2015, QNX Software Systems Limited24

Multimedia Playlist API

mmplaylist_entry_validated_t

Properties of retrieved playlist entries

Synopsis:

#include <mm/mmplaylist.h>

typedef enum {

MMPLAYLIST_ENTRY_RESOLVED = 0,

MMPLAYLIST_ENTRY_NOT_LOCATED = 0x01,

MMPLAYLIST_ENTRY_NOT_CONVERTED = 0x02,

} mmplaylist_entry_validated_t;

Data:

MMPLAYLIST_ENTRY_RESOLVED

The resolved entry is valid (no further processing is required).

MMPLAYLIST_ENTRY_NOT_LOCATED

The entry's track file wasn't found.

MMPLAYLIST_ENTRY_NOT_CONVERTED

The entry couldn't be converted to the desired encoding.

Library:
libmmplaylist

Copyright © 2015, QNX Software Systems Limited 25

Multimedia Playlist API

mmplaylist_error_info_t

Error information

Synopsis:

#include <mm/mmplaylist.h>

typedef struct {

int error_code;

} mmplaylist_error_t;

Data:

int error_code

An mmplaylist_error_type_t (p. 27) value identifying the error that occurred.

Library:
libmmplaylist

Description:

The mmplaylist_error_t structure stores information on the last error that occurred in a session. This
structure is filled in by mmplaylist_last_error_get() (p. 31).

Copyright © 2015, QNX Software Systems Limited26

Multimedia Playlist API

mmplaylist_error_type_t

Playlist session errors

Synopsis:

#include <mm/mmplaylist.h>

typedef enum {

mmplaylist_ok = 0,

mmplaylist_err,

mmplaylist_no_memory,

mmplaylist_char_conv_failure,

mmplaylist_entry_conf_failure,

mmplaylist_entry_validation_failure,

mmplaylist_config_error,

mmplaylist_entry_too_large,

mmplaylist_read_error,

mmplaylist_end_of_playlist,

mmplaylist_position_too_short,

mmplaylist_position_too_long,

mmplaylist_file_system_error,

mmplaylist_invalid_input,

mmplaylist_session_invalid

} mmplaylist_error_type_t;

Data:

mmplaylist_ok

The operation was successful.

mmplaylist_err

An unexpected error occurred (e.g., initialization failed or a plugin couldn't complete the

requested operation).

mmplaylist_no_memory

The library couldn't allocate enough memory to store the requested information.

mmplaylist_char_conv_failure

The character conversion failed.

mmplaylist_entry_conf_failure

An error occurred while converting a playlist entry to the requested encoding.

mmplaylist_entry_validation_failure

An error occurred while validating a playlist entry.

Copyright © 2015, QNX Software Systems Limited 27

Multimedia Playlist API

mmplaylist_config_error

The library couldn't read the configuration file or a plugin failed to load.

mmplaylist_entry_too_large

The entry was too large for the library to process, so the caller should skip this entry and

get the next one.

mmplaylist_read_error

A plugin encountered an error while parsing the next entry.

mmplaylist_end_of_playlist

The end of the playlist was reached.

mmplaylist_position_too_short

The requested new position is before the beginning of the playlist.

mmplaylist_position_too_long

The requested new position is after the end of the playlist.

mmplaylist_file_system_error

An error occurred while parsing the playlist file.

mmplaylist_invalid_input

An invalid argument was given.

mmplaylist_session_invalid

The playlist session is invalid.

Library:
libmmplaylist

Description:

The mmplaylist_error_type_t enumerated type defines codes for playlist session errors. These values
are stored in the mmplaylist_error_info_t (p. 26) structure.

Copyright © 2015, QNX Software Systems Limited28

Multimedia Playlist API

mmplaylist_fmt_list_t

List of supported playlist formats

Synopsis:

#include <mm/mmplaylist.h>

typedef struct mmplaylist_fmt_list {

int num_entries;

char **playlist_fmtstr;

} mmplaylist_fmt_list_t;

Data:

int num_entries

The number of extensions/formats that are supported.

char **playlist_fmtstr

An array of strings containing the supported extensions/formats.

Library:
libmmplaylist

Description:

The mmplaylist_fmt_list_t structure stores the list of supported playlist formats. This structure is filled
in and returned to the client by mmplaylist_supported_fmts_get() (p. 39). When finished using this

information, the client must free the structure by callingmmplaylist_supported_fmts_release() (p. 40).

Copyright © 2015, QNX Software Systems Limited 29

Multimedia Playlist API

mmplaylist_init()

Initialize the library

Synopsis:

#include <mm/mmplaylist.h>

int mmplaylist_init(const char *config)

Arguments:

config

The path of the configuration file to use. Set this parameter to NULL to make the library

use the file at the path in the MM_PLAYLIST_CONFIG environment variable or at the default

path if that variable isn't defined.

Library:
libmmplaylist

Description:

This function initializes the playlist library by loading the character converter library, parsing the

configuration file, and then trying to load each PLP named in the configuration file.

You must call this function once and it must be the first function you call.

Returns:

0

Success. This value is equivalent to the mmplaylist_ok error code.

>0

An mmplaylist_error_type_t (p. 27) constant indicating the error that occurred (call
mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited30

Multimedia Playlist API

mmplaylist_last_error_get()

Get information about the last error

Synopsis:

#include <mm/mmplaylist.h>

void mmplaylist_last_error_get(mmplaylist_t *pl,

mmplaylist_error_info_t *error_info)

Arguments:

pl

A valid session handle.

error_info

A pointer to a structure for storing the error information.

Library:
libmmplaylist

Description:

This function gets information on the last error that occurred for the specified session. The library fills

in the mmplaylist_error_info_t (p. 26) structure referred to by error_info .

Note that reading the last error value clears it as well.

Copyright © 2015, QNX Software Systems Limited 31

Multimedia Playlist API

mmplaylist_num_entries_get()

Get the number of entries in a playlist

Synopsis:

#include <mm/mmplaylist.h>

int mmplaylist_num_entries_get(mmplaylist_t *pl)

Arguments:

pl

A valid session handle.

Library:
libmmplaylist

Description:

This function gets the number of entries in a playlist. This operation can be very expensive, so the

application should first check the num_entries_get_fast field in themmplaylist_props_t (p. 37) structure
to determine whether this operation can be completed quickly.

Note that calling this function on an empty playlist returns a value of 0.

Returns:

>=0

The number of playlist entries.

-1

An error occurred (call mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited32

Multimedia Playlist API

mmplaylist_open()

Open a session on a playlist

Synopsis:

#include <mm/mmplaylist.h>

mmplaylist_t* mmplaylist_open(

const char *base_name,

const char *playlist_name,

mmplaylist_validation_mode_t validation_mode,

mmplaylist_validation_fn_t *validate_fn,

void *cbk_data)

Arguments:

base_name

A string containing the base directory of the mediastore on which the playlist is contained.

playlist_name

A string containing the full path to the playlist. This path can be an absolute filepath or a

URL.

validation_mode

The method that libmmplaylist must use to resolve playlist entries (see
mmplaylist_validation_mode_t (p. 44) for the list of acceptable values).

validate_fn

The callback function to use for validating playlist entries. This optional parameter can be

set to NULL, in which case the library uses stat() to validate entries. Also, entry validation

is done only when validation_mode is set to MMPLAYLIST_ENTRY_VALIDATE.

cbk_data

Data for the callback function. This data gets passed unmodified to the callback function.

The data can be NULL.

Library:
libmmplaylist

Description:

This function opens a session on a playlist. The library creates and returns a handle to represent the

new playlist session. Internally, the library queries the available plugins to identify which ones support

this playlist format. If multiple plugins support the format, the highest-ranked one is selected for use

with this session. The plugin selection is stored in the session handle.

Copyright © 2015, QNX Software Systems Limited 33

Multimedia Playlist API

http://www.qnx.com/developers/docs/qnxcar2/topic/com.qnx.doc.neutrino.lib_ref/topic/s/stat.html?cp=5_1_20_170

Returns:

A pointer to the new playlist handle

Success (i.e., the playlist is supported).

NULL

Failure.

Copyright © 2015, QNX Software Systems Limited34

Multimedia Playlist API

mmplaylist_plps_list()

List available playlist plugins

Synopsis:

#include <mm/mmplaylist.h>

ssize_t mmplaylist_plps_list(char *buffer, size_t buf_len)

Arguments:

buffer

A pointer to memory for storing a comma-separated list of playlist plugin (PLP) names.

When NULL, the function writes no data but returns the buffer size required for holding the

PLP names.

buf_len

Length of buffer (can be 0).

Library:
libmmplaylist

Description:

This diagnostic function returns a list of all PLPs that were successfully loaded and initialized.

You must allocate the memory for the buffer that will hold the plugin names. If you need to know how

much memory to allocate, call this function with buffer set to NULL. The function then returns the

number of bytes needed to store the names. You can then allocate this much memory in a buffer and

call mmplaylist_plps_list() a second time, passing in a pointer to the new buffer to make the library

populate it with the list of PLP names.

Returns:

>=0

The buffer length needed to list all available plugins.

-1

An error occurred (call mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited 35

Multimedia Playlist API

mmplaylist_props_get()

Get properties of a playlist session

Synopsis:

#include <mm/mmplaylist.h>

mmplaylist_props_t* mmplaylist_props_get(mmplaylist_t *pl)

Arguments:

pl

A valid session handle.

Library:
libmmplaylist

Description:

This function gets the properties of a playlist session. The properties are written in a data structure

returned to the caller. Applications can then read the properties to learn which operations are fast in

the current session and then provide a better user experience by avoiding slow operations.

The mmplaylist_props_get() function allocates memory for the structure that it returns. The caller

should free this memory using free().

Returns:

A pointer to an mmplaylist_props_t structure

Success.

NULL

Failure (call mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited36

Multimedia Playlist API

http://www.qnx.com/developers/docs/qnxcar2/topic/com.qnx.doc.neutrino.lib_ref/topic/f/free.html?cp=5_1_7_46

mmplaylist_props_t

Playlist session properties

Synopsis:

#include <mm/mmplaylist.h>

typedef struct mmplaylist_props {

int num_entries_get_fast;

int seek_fast;

int rewind_fast;

} mmplaylist_props_t;

Data:

int num_entries_get_fast

A value of 1 if the number of playlist entries can be retrieved quickly; 0 if it can't be.

int seek_fast

A value of 1 if the playlist allows the client to quickly jump to an arbitrary position; 0 if it

doesn't.

int rewind_fast

A value of 1 if the playlist allows the client to quickly rewind to the beginning of the playlist;

0 if it doesn't.

Library:
libmmplaylist

Description:

The mmplaylist_props_t structure is used to return the properties of a playlist session to the client
application (through mmplaylist_props_get() (p. 36)). The operation to retrieve this information is

always fast. By reading the properties returned, the client can choose to call certain library functions

based on whether the corresponding operation is fast.

Copyright © 2015, QNX Software Systems Limited 37

Multimedia Playlist API

mmplaylist_seek_offset_t

Directives for seeking to playlist positions

Synopsis:

#include <mm/mmplaylist.h>

typedef enum {

MMPLAYLIST_SEEK_CUR = 0,

MMPLAYLIST_SEEK_ABS

} mmplaylist_seek_offset_t;

Data:

MMPLAYLIST_SEEK_CUR

A position relative to the current position.

MMPLAYLIST_SEEK_ABS

An absolute position in the playlist.

Library:
libmmplaylist

Copyright © 2015, QNX Software Systems Limited38

Multimedia Playlist API

mmplaylist_supported_fmts_get()

Get the list of supported playlist formats

Synopsis:

#include <mm/mmplaylist.h>

mmplaylist_fmt_list_t* mmplaylist_supported_fmts_get(void)

Library:
libmmplaylist

Description:

This function gets the list of playlist formats supported by the library. The data structure filled in by

this function contains the number of supported playlist types and a pointer to an array of strings

containing the file extensions of the supported playlist types.

The library allocates memory for the data structure and returns a pointer to it. Callers must use

mmplaylist_supported_fmts_release() (p. 40) to release the memory when they're done with it. They

must not modify or free the memory themselves; doing so will result in unpredictable behavior.

Returns:

A pointer to an mmplaylist_fmt_list_t structure

Success.

NULL

Failure (call mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited 39

Multimedia Playlist API

mmplaylist_supported_fmts_release()

Release memory for the list of supported playlist formats

Synopsis:

#include <mm/mmplaylist.h>

int mmplaylist_supported_fmts_release(

mmplaylist_fmt_list_t *extn_list)

Arguments:

extn_list

The list of supported playlist formats.

Library:
libmmplaylist

Description:

This function releases the memory for the list of playlist formats supported by the library. This memory

was allocated in an earlier mmplaylist_supported_fmts_get() (p. 39) call.

Returns:

0

Success.

-1

An error occurred (call mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited40

Multimedia Playlist API

mmplaylist_t

Data type for playlist session handle

Synopsis:

#include <mm/mmplaylist.h>

typedef struct mmplaylist mmplaylist_t;

Library:
libmmplaylist

Description:

The mmplaylist_t structure is a private data type representing a playlist session handle.

Copyright © 2015, QNX Software Systems Limited 41

Multimedia Playlist API

mmplaylist_terminate()

Terminate the library

Synopsis:

#include <mm/mmplaylist.h>

int mmplaylist_terminate(void)

Library:
libmmplaylist

Description:

This function terminates the playlist library from use by unloading all the PLPs. You must call this

function once and it must be the last function you call.

If an error occurs, the function returns an error code but the library still becomes unusable. The

application should not, under any circumstances, call any library function (not even

mmplaylist_last_error_get() (p. 31)) after calling this function.

Returns:

0

Success.

-1

An error occurred (call mmplaylist_last_error_get() for details).

Copyright © 2015, QNX Software Systems Limited42

Multimedia Playlist API

mmplaylist_validation_fn_t

Prototype for the validation function

Synopsis:

#include <mm/mmplaylist.h>

typedef mmplaylist_entry_validated_t

mmplaylist_validation_fn_t(char *filename, void *cbk_data);

Library:
libmmplaylist

Description:

The mmplaylist_validation_fn_t data type specifies the prototype for the validation function. See the
mmplaylist_entry_next_get() (p. 21) description for an explanation of playlist entry validation.

The function takes two parameters:

• filename , which contains the name being proposed as resolved

• cbk_data , which stores a pointer to data for the callback (validation) function

The function returns an mmplaylist_entry_validated_t (p. 25) constant indicating the properties of the
retrieved entry.

Copyright © 2015, QNX Software Systems Limited 43

Multimedia Playlist API

mmplaylist_validation_mode_t

Directives for validating playlist entries

Synopsis:

#include <mm/mmplaylist.h>

typedef enum {

MMPLAYLIST_ENTRY_RAW_ENC = 0,

MMPLAYLIST_ENTRY_UTF8_ENC,

MMPLAYLIST_ENTRY_VALIDATE,

MMPLAYLIST_ENTRY_UTF8_VALIDATE

} mmplaylist_validation_mode_t;

Data:

MMPLAYLIST_ENTRY_RAW_ENC

Return raw playlist entries to the caller.

MMPLAYLIST_ENTRY_UTF8_ENC

Return playlist entries converted to UTF-8 to the caller.

MMPLAYLIST_ENTRY_VALIDATE

Use a helper function to validate the raw entry before returning it to the caller.

The library will validate the entry as an absolute path, not just the entry read from the

playlist.

MMPLAYLIST_ENTRY_UTF8_VALIDATE

Use a helper function to validate a UTF-8 encoded entry before returning it to the caller.

The library will pass only the encoded entry to the validation callback; it won't try to make

the path absolute.

Library:
libmmplaylist

Description:

Themmplaylist_validation_mode_t enumerated type defines the types of validation that can be performed
on playlist entries. This list might be extended at a future date.

Copyright © 2015, QNX Software Systems Limited44

Multimedia Playlist API

Index

A

architecture 10

C

concurrent sessions 13

configuration file 15

configuring plugins 15

F

formats 12

H

handling session errors 14

I

included plugins 12

L

layers 10

libmmplaylist API 17

libmmplaylist introduction 9

libmmplaylist overview 9

M

MM_PLAYLIST_CONFIG environment variable 15

mmplaylist_init() as the first function to call 17

mmplaylist_terminate() as the last function to call 17

multimedia playlist API 17

P

playlist file parsing 11

playlist plugins 11

playlist sessions 13

playlists 9

plugin ratings 11

plugins 11

S

session error information 14

T

Technical support 8

Typographical conventions 6

Copyright © 2015, QNX Software Systems Limited 45

Index

Copyright © 2015, QNX Software Systems Limited46

Index

	Contents
	About This Reference
	Typographical conventions
	Technical support

	Multimedia Playlist Library Overview
	Architecture of libmmplaylist
	Plugins
	Plugin ratings
	Included plugins

	Playlist sessions

	Configuration File
	Multimedia Playlist API
	mmplaylist_close()
	mmplaylist_current_pos_get()
	mmplaylist_current_pos_set()
	mmplaylist_entry_next_get()
	mmplaylist_entry_release()
	mmplaylist_entry_t
	mmplaylist_entry_validated_t
	mmplaylist_error_info_t
	mmplaylist_error_type_t
	mmplaylist_fmt_list_t
	mmplaylist_init()
	mmplaylist_last_error_get()
	mmplaylist_num_entries_get()
	mmplaylist_open()
	mmplaylist_plps_list()
	mmplaylist_props_get()
	mmplaylist_props_t
	mmplaylist_seek_offset_t
	mmplaylist_supported_fmts_get()
	mmplaylist_supported_fmts_release()
	mmplaylist_t
	mmplaylist_terminate()
	mmplaylist_validation_fn_t
	mmplaylist_validation_mode_t

	Index

