
Multimedia Renderer
Developer's Guide

QNX® SDK for Apps and Media 1.1

©2007–2015, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: March 25, 2015

Contents
About This Guide..7

Typographical conventions..8

Technical support...10

Chapter 1: Multimedia Renderer: Capabilities and Architecture...11
Supported media categories..12

Abstraction layers...13

Contexts..14

Outputs...15

Inputs...16

Plugins...17

Chapter 2: Using the Multimedia Renderer..19
Starting the multimedia renderer...20

Configuration file for mm-renderer...20

Command line for mm-renderer...22

Working with contexts...24

Closing context handles...24

Defining Parameters...26

Playing media..27

Play states..27

Play speed..27

Seeking to positions..28

Managing video windows..28

Recording audio data..33

PPS objects...35

Context state..35

Play state, warnings, and errors..36

Input metadata...37

Playlist window...37

Supported file and MIME types..38

Chapter 3: Multimedia Renderer API...39
Connection management...40

mmr_connect()...41

mmr_connection_t ...42

mmr_disconnect()...43

Context management..44

mmr_command_send()..45

mmr_context_close()...46

mmr_context_create()..47

mmr_context_destroy()..49

Multimedia Renderer Developer's Guide

mmr_context_open()..50

mmr_context_parameters()...52

mmr_context_t ...54

Error information..55

mm_error_code_t..56

mmr_error_info()...60

mmr_error_info_t..61

Events..63

mmr_event_arm()..64

mmr_event_data_set()...66

mmr_event_get()...68

mmr_event_t..70

mmr_event_type_t...78

mmr_event_wait()..80

mmr_state_t...82

Input configuration...83

mmr_input_attach()...84

mmr_input_detach()..88

mmr_input_parameters()..89

mmr_track_parameters()..92

Output configuration..95

mmr_output_attach()...96

mmr_output_detach()..100

mmr_output_parameters()..101

Playback control..105

mmr_list_change()..106

mmr_play()...108

mmr_seek()..109

mmr_speed_set()..110

mmr_stop()...112

Chapter 4: Dictionary Object API..113
strm_dict_clone()...114

strm_dict_compare()..115

strm_dict_destroy()..116

strm_dict_find_index()..117

strm_dict_find_rstr()...118

strm_dict_find_value()..119

strm_dict_index_delete()...120

strm_dict_key_delete()..121

strm_dict_key_get()..122

strm_dict_key_rstr()..123

strm_dict_new()...124

strm_dict_set()..125

strm_dict_set_rstr()..127

strm_dict_size()...129

strm_dict_subtract()...130

Contents

strm_dict_t..131

strm_dict_value_get()...133

strm_dict_value_rstr()...134

strm_string_alloc()...135

strm_string_clone()..136

strm_string_destroy()..137

strm_string_get()..138

strm_string_make()..139

strm_string_modify()..140

strm_string_t...141

Index...143

Multimedia Renderer Developer's Guide

Contents

About This Guide

The Multimedia Renderer Developer's Guide is intended for developers who want to write multimedia

applications that use the mm-renderer service to control playback.

This table may help you find what you need in this guide:

Go to:To find out about:

Multimedia Renderer: Capabilities and

Architecture (p. 11)

The main features of the mm-renderer service

Starting the multimedia renderer (p. 20)The setup tasks required to launch mm-renderer

Working with contexts (p. 24)Using contexts to define media flows

Playing media (p. 27)The steps required to play media

Multimedia Renderer API (p. 39)Connecting to mm-renderer and managing contexts to

control playback

Dictionary Object API (p. 113)Working with dictionary objects to define media

properties

Copyright © 2015, QNX Software Systems Limited 7

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have unwanted or

undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your

files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited8

About This Guide

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited 9

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

Copyright © 2015, QNX Software Systems Limited10

About This Guide

http://www.qnx.com

Chapter 1
Multimedia Renderer: Capabilities and Architecture

The multimedia rendering component, mm-renderer, allows multimedia applications to play audio and

video media from files and devices.

The mm-renderer service provides mechanisms for:

• specifying the set of media to play

• issuing playback control commands

• retrieving the current playback status

• requesting notifications when the status changes

• providing dynamic metadata (such as position in a track or playlist) for some media content

The multimedia renderer API allows you to control media playback and recording and to monitor media

operations by receiving events. To examine the system data used by mm-renderer, use the Persistent

Publish/Subscribe (PPS) service. For more information, see the “PPS objects (p. 35)” section or the

PPS Developer's Guide.

The mm-renderer service can play media content independently because it directly reads the

specified input files without relying on information in databases. You may run mm-sync to

synchronize media metadata with databases so that your applications can display up-to-date

information, but this activity isn't necessary for playing media with mm-renderer.

Copyright © 2015, QNX Software Systems Limited 11

Supported media categories

The mm-renderer service supports playback of tracks and playlists. The content can be read from local

files, HTTP streams, or database queries (for playlists only). The media category is indicated in the

input URL given to mm-renderer.

For the current list of supported device types, filesystems, codecs, and video formats, see the

Release Notes for the QNX SDK for Apps and Media.

Sources for audio and video tracks

A track is an audio or video file such as an MP3 or MP4 file. You can play tracks from these sources:

Files

To play media content from files, specify the path (in POSIX format) of an audio or video

file in the input URL, with or without a file: or http: prefix. You can name a dynamically

growing file using the file2b: prefix, which lets you play content that's downloading.

HTTP streams

To play media content from HTTP sources, specify an HLS source or another type of HTTP

stream in an input URL starting with http: or https:. The mm-renderer service supports

cookies, SSL, and authentication, which enables secure playback of HTTP streams.

Audio capture devices

Use an input URL that either starts with snd: and lists the device path or that starts with

audio: and names a supported audio device. For both URL types, you can configure several

parameters such as the sampling rate, number of channels, and number of bits per sample.

More details on the options available with any of these URL types and the sources they refer to are

given in the mmr_input_attach() (p. 84) description. The same reference also explains how you can

treat a single track as its own playlist, using the autolist input type.

Supported playlist types

A playlist is a list of track URLs. The following types of playlists are supported:

M3U files

The input URL must be a full path (with or without a file: or http: prefix) of a file with

an M3U extension. In its simplest form, an M3U file is a plain-text file containing the

pathnames or URLs of the tracks to play (one per line). Playlists for HTTP Live Streaming

(HLS) are supported; these may have M3U and M3U8 file extensions.

SQL queries

The input URL must be of the form sql:database?query=querystring , where database

is a full path to a database file, and querystring is an SQL query that returns a column of

track names.

The mmr_input_attach() description gives full details on the format of playlist URLs (p. 86).

Copyright © 2015, QNX Software Systems Limited12

Multimedia Renderer: Capabilities and Architecture

Abstraction layers

The multimedia renderer uses a layered architecture to process playback commands and manage the

flow of media content from input to output.

The mm-renderer architecture consists of three abstraction layers:

• The messaging layer decodes client messages and delivers them to contexts. A context is an object

capable of playing one piece of input media at a time on a set of output devices. The input can

contain both audio and video signals (e.g., a movie), and the set of outputs can consist of both

audio and video devices (e.g., speakers and a screen).

• The context management layer:

• keeps track of the outputs attached to each context

• maps each output to the engine plugins that can support that output type

• selects the appropriate engine plugins and attaches them to the context

• preserves the context state between detaching and reattaching inputs

• publishes the context state through the PPS service

• delivers client requests (e.g., play) to engine plugins

• The plugin management layer keeps track of all available plugins.

Copyright © 2015, QNX Software Systems Limited 13

Multimedia Renderer: Capabilities and Architecture

Contexts

The mm-renderer service provides contexts, each of which can play a stream of media content

concurrently with and independently of other contexts. Each context can direct output to a different

set of hardware devices or files, creating independent zones of operation.

The operations that are available for a context at a particular time depend on the input and outputs

attached to it. For example, changing playlists won't work unless your input type is a playlist, and

seeking to a new track position doesn't apply for some input streams (e.g., radio stations) or devices

(e.g., microphones). You can use a context for operations other than playing, by setting its output

appropriately. For instance, you can record rather than play an audio stream by setting a context's

output to a file and its input to an audio capture device (i.e., a microphone).

Your application must connect to the mm-renderer service before it can create a context. When your

application creates a context, the context has a unique name but no other properties are set. For

subsequent operations, your application accesses the context through the handle returned by

mm-renderer when it created the context. Depending on its configuration, mm-renderer may behave

differently when you close context handles.

You can control properties of the context's operation (e.g., audio volume) by attaching parameters to

the context, its input, or each of its outputs (for details, see “Parameters (p. 26)”).

Copyright © 2015, QNX Software Systems Limited14

Multimedia Renderer: Capabilities and Architecture

Outputs

Each context has to have one or more outputs attached before it can play anything, so that it can

determine where to send the content.

The output can be:

• a file

• an audio device

• a video device

Outputs need to be attached before the input. This is because some engine plugins may determine

whether to play an input based on what kind of outputs are attached, and may not support detaching

and reattaching outputs after the input is connected.

Copyright © 2015, QNX Software Systems Limited 15

Multimedia Renderer: Capabilities and Architecture

Inputs

Each context has to have one input attached, so it knows what to play.

When an input is attached, the context management layer selects the appropriate engine plugin and

attaches it to the context. Your application has to identify the input type for mm-renderer because the

service doesn't automatically detect the type of the attached input.

The input type determines how mm-renderer responds to certain playback requests, such as seeking

to a track position or changing playlists. Which input types are supported depends on the configuration

of mm-renderer; however, the playback behavior for a given input type does not depend on the

configuration.

Although an input may be attached to more than one context, mm-renderer doesn't detect or manage

conflicting playback operations—your application must manage potential playback conflicts.

Copyright © 2015, QNX Software Systems Limited16

Multimedia Renderer: Capabilities and Architecture

Plugins

Engine plugins are the components used by mm-renderer to process media data read from the input

before directing that data to the attached outputs.

The implementation of the engine plugins is invisible to mm-renderer and its clients. The context

management layer selects the appropriate plugin based on the types of the input and outputs attached

to the context and on the rating that each plugin gives itself for the specified input and outputs.

Copyright © 2015, QNX Software Systems Limited 17

Multimedia Renderer: Capabilities and Architecture

Chapter 2
Using the Multimedia Renderer

The multimedia renderer is a connection-based service that controls the playback of media read from

an input and directed to one or many outputs.

Before calling any API functions to start and control playback, you must start mm-renderer and your

application must connect to it by calling mmr_connect() (p. 41). After you're connected, you can:

1. Create contexts for managing individual media content flows.

2. Attach inputs and outputs to contexts.

3. Configure parameters to optimize mm-renderer to play certain audio content and to set authentication

and proxy settings if reading content from HTTP streams.

4. Issue media playback commands.

When you're finish using mm-renderer, you should disconnect from the service by calling

mmr_disconnect() (p. 43).

Copyright © 2015, QNX Software Systems Limited 19

Starting the multimedia renderer

The multimedia renderer service is controlled with the mm-renderer command utility. Before starting

the service, you must prepare a configuration file and set up your PPS state directory.

To start mm-renderer:

1. Create and save, in the /etc/mm/ directory, the configuration file (named mm-renderer.conf) to use.

For a sample configuration file, see “Configuration file for mm-renderer (p. 20)”.

2. In a QNX Neutrino terminal, enter pps to start PPS as a background process.

PPS creates a root directory (/pps by default) to store the PPS configuration objects, which are text

files that provide state, error, and playlist information on the multimedia renderer's setup.

3. Enter mkdir -p /pps/services/multimedia/renderer to create the root directory for

holding the PPS objects used by mm-renderer.

For an explanation of the PPS objects used by mm-renderer, see “PPS objects (p. 35)”.

4. Enter mm-renderer followed by any desired options to start the multimedia renderer service.

For debugging purposes, you should start mm-renderer with -vvvvvvv options to get verbose

output. The -v option is cumulative, with each v adding a level of verbosity, up to seven levels.

For an explanation of all command-line options, see “Command line for mm-renderer (p. 22)”.

The PPS and multimedia renderer services are running. Client applications can now use the mm-renderer
API to control playback.

Configuration file for mm-renderer

The multimedia renderer configuration file specifies the plugins to load and the default values for

plugin parameters. The path of this file is /etc/mm/mm-renderer.conf, and the file must be defined

before you start mm-renderer.

A single configuration file is used for all instances of mm-renderer. Thus, all running instances of the

service have the same plugins available, with the same default parameters.

After starting, mm-renderer does not support "on-the-fly" configuration changes. To modify the

configuration, you must shut down mm-renderer, update its configuration file, and restart the

service.

The configuration file is a text file that gets parsed by mm-renderer to load and configure the plugins

used in playback. Blank lines are ignored, as is any leading or trailing white space. Lines specifying

parameters are in the form key=value . Unknown parameter types are ignored and so they can be made

into comments. For example, you can enter My Comment Goes Here on a line and mm-renderer

will consider it to be an unsupported parameter and so will ignore that line when parsing the file.

However, we recommend using the number sign ('#') to clearly indicate the start of any comments.

The file is divided into sections, each of which configures one plugin. Sections begin with the [plugin]

keyword on its own line. The name of the plugin library file is specified on the next line, with the dll

key. Default values to any parameters supported by the plugin may be specified on the lines that follow.

Copyright © 2015, QNX Software Systems Limited20

Using the Multimedia Renderer

Suppose you want to use the audio/video player routing plugin, and override the default status update

interval of 1000 ms with an update interval of half that time. You would then write a section in the

configuration file as follows:

Configure the audio/video player routing plugin

[plugin]

dll=mmr-mmf-routing.so

Set a half-second (500ms) interval between updates

updateinterval=500

Any of the default values set in the configuration file can be overridden by client applications by setting

the parameter through the API.

The following plugins and associated parameters are supported:

MMF audio recorder routing plugin

Library file: mmr-mmfrip-routing.so

There are no parameters for this plugin.

Playlist engine plugin

Library file: mmr-playlist-engine.so

This plugin supports the "playlist" and "autolist" input types, and has these

parameters:

queue_max

The maximum number of tracks in the queue window.

tracks_max

The maximum number of tracks to keep open.

DLNA playlist engine plugin

Library file: mmr-dlnaplaylist-engine.so

This plugin supports the "dlnatrack" and "dlnaplaylist" input types. There are no

parameters for this plugin.

Single-track engine plugin

Library file: mmr-track-engine.so

This plugin supports the "track" input type. There are no parameters for this plugin.

MMF audio/video player routing plugin

Library file: mmr-mmf-routing.so

This plugin has the following parameters:

updateinterval

The interval between status updates, in milliseconds.

BB OS audio management plugin

Library file: mmr-audiomgmt-plugin.so

Copyright © 2015, QNX Software Systems Limited 21

Using the Multimedia Renderer

This plugin supports the audio: output URL, and has these parameters:

writer

The filter to use as the audio writer for audio: outputs.

BB OS network connection monitoring plugin

Library file: mmr-netmgmt-plugin.so

There are no parameters for this plugin.

Command line for mm-renderer

Start mm-renderer and configure context handle policies, PPS objects, and file permissions

Synopsis:

mm-renderer [-cefoq] -r statepath -s serverpath

[-U] {username|uid[:gid[,gid]*]} [-u] [-v[v...]]

Options:

-c

Destroy a context when the primary handle is closed.

-e

Log to stderr instead of slog.

-f

Stay in the foreground.

-o

Disallow the opening of existing contexts (also implies -c).

-q

Run in quiet mode.

-r statepath

The location of the PPS directory that stores the objects used by the mm-renderer process.

We refer to this directory as the PPS state directory, and the default value is

/pps/services/multimedia/renderer.

If you want to run multiple mm-renderer instances, you must use different PPS state

directories for each instance by providing different paths with the -r option. Running

multiple mm-renderer instances can improve security. For example, you could run a coporate

mm-renderer that is accessible to only privileged system processes and a personal

mm-renderer for use by your client applications. This way, no client could accidentally or

intentionally overwrite system memory with buggy or harmful code.

Copyright © 2015, QNX Software Systems Limited22

Using the Multimedia Renderer

-s serverpath

The full path of the control object in PPS (default: the control object in the

/pps/services/multimedia/renderer directory). The value for the -s option may be an absolute

path or a relative path; for the latter case, the given path will be appended to the PPS state

directory path.

-U { username | uid [:gid [,gid]*] }

Run mm-renderer with the given username or with the given user ID (uid) and possibly one

or many group IDs (gids). When this option isn't specified, mm-renderer uses the client's

user ID and group ID.

-u

Don't reset the umask. Without this option, the umask is reset to 0 when mm-renderer starts.

-v

Increase output verbosity. Messages are written to sloginfo.

The -v option is handy when you're trying to understand the operation of mm-renderer, but

when lots of -v arguments are used, the logging becomes quite significant and can change

timing noticeably. The verbosity setting is good for systems under development but should

probably not be used in production systems or when performance testing.

Description:

The mm-renderer command line lets you adjust the context handle and logging policies, override the

default PPS control object and the state directories, and assign specific file permissions to output

files.

The mm-renderer service runs as a server process and responds to media playback commands, and

delivers events to clients so they can monitor media operations.

Copyright © 2015, QNX Software Systems Limited 23

Using the Multimedia Renderer

Working with contexts

Contexts define media flows from an input to one or many outputs. You must configure a context before

you can start playing media content.

To create a new context, call the mmr_context_create() (p. 47) function, passing in the mm-renderer
connection handle. The creation operation returns a context handle (the primary handle), which you

use to manipulate the context by setting parameters, attaching an input and one or more outputs, and

issuing playback commands.

You can create multiple contexts, as long as your application manages potentially conflicting playback

situations (e.g., simultaneous requests to play two different tracks from the same CD).

The state of a context is stored in a PPS object. For information on PPS objects, see “PPS

objects (p. 35)”.

When a context is no longer needed, you can explicitly destroy it by passing its primary handle to the

mmr_context_destroy() (p. 49) function.

Related Links

PPS objects (p. 35)

The multimedia renderer service stores a variety of information using Persistent Publish/Subscribe

(PPS) objects.

mmr_context_create() (p. 47)

Create a context

mmr_context_close() (p. 46)

Close a context

mmr_context_destroy() (p. 49)

Destroy a context

mmr_context_open() (p. 50)

Open an existing context

Closing context handles

Depending on the mm-renderer configuration, client applications may be allowed to obtain additional

handles to existing contexts. This configuration setting determines the behavior of mm-renderer when

closing context handles.

Handles obtained by opening existing contexts are called secondary context handles, whereas the

handle obtained by creating a context is called the primary context handle.

In addition, the configuration may allow a context to exist after its primary handle has been closed.

This is called an orphan context. When orphan contexts are allowed, secondary handles are also allowed;

however, secondary handles may be allowed when orphan contexts aren't. For further clarification, see

the descriptions of the -c and -o options for the mm-renderer command-line (p. 22).

The behavior of mm-renderer in closing context handles depends on your orphan context policy:

• If orphan contexts are allowed, the only way to close the primary context handle without destroying

the context is by calling mmr_context_close() (p. 46).

Copyright © 2015, QNX Software Systems Limited24

Using the Multimedia Renderer

• If orphan contexts aren't allowed, there's no way to close the primary handle without destroying

the context. In this case, calling mmr_context_close() with the primary handle is equivalent to

calling mmr_context_destroy() (p. 49) because mm-renderer will not only close the context handle

but will also stop playback, detach any inputs and outputs, and destroy the context. Therefore, you

must ensure that any secondary handles, if permitted, are properly closed.

• Regardless of the configuration, if your application terminates unexpectedly or disconnects from

mm-renderer without explicitly closing the primary handle, the context is destroyed.

In all circumstances, it's important to properly close unneeded context handles to prevent

memory leaks.

Related Links

mmr_context_close() (p. 46)

Close a context

mmr_context_destroy() (p. 49)

Destroy a context

Copyright © 2015, QNX Software Systems Limited 25

Using the Multimedia Renderer

Defining Parameters

Parameters allow you to set various properties that influence how media files are accessed and rendered

during playback.

Properties such as the audio volume or video display size can be controlled by defining parameters for

a context or for its input or any of its outputs. Parameters are represented as dictionary objects

(collections of key-value pairs), where both the key and value are strings. The parameters that apply

to the context and its input and outputs depend on the media content being played or recorded.

Whether defining parameters for the context, its input, or one of its outputs, your application has to

call strm_dict_new() (p. 124) to create a new dictionary object if none exists. Use strm_dict_set() (p. 125)

to set the key-value pairs for the parameters that you want to define.

To set parameters for the context, call the function mmr_context_parameters() (p. 52), passing in the

handle to the dictionary object that holds the context parameters. Similarly, call

mmr_input_parameters() (p. 89) to set input parameters and mmr_output_parameters() (p. 101) for

output parameters. In each case, you must pass in a handle to a separate dictionary object populated

with the appropriate key-value pairs.

To modify parameters, call the appropriate function again, passing in a handle to a dictionary object

populated with the new parameters. Note that the mmr_*_parameters() functions replace any previous

parameter settings with the latest settings, so the caller must keep track of which parameters have

been defined. Also, the parameter functions consume the dictionary object handle in each call. If you

want to keep a dictionary, call strm_dict_clone() (p. 114) to duplicate the handle before calling one of

the parameter functions.

Related Links

Dictionary Object API (p. 113)

A dictionary object is a collection of key-value pairs that maps the names of parameters to their values.

For mm-renderer, you can use the dictionary API to define context, input, and output parameters.

Other components can use the same API to manage parameters specific to their purpose.

strm_dict_clone() (p. 114)

Duplicate a dictionary handle

strm_dict_new() (p. 124)

Create a new handle for an empty dictionary object

strm_dict_set() (p. 125)

Modify a dictionary entry (using key-value strings)

mmr_context_parameters() (p. 52)

Set context parameters

mmr_input_parameters() (p. 89)

Set input parameters

mmr_output_parameters() (p. 101)

Set output parameters

mmr_track_parameters() (p. 92)

Set track parameters

Copyright © 2015, QNX Software Systems Limited26

Using the Multimedia Renderer

Playing media

Playing media in mm-renderer requires configuring a context, attaching outputs and an input, and

then issuing playback commands.

To play media in mm-renderer:

1. Connect to mm-renderer using the function mmr_connect() (p. 41).

2. Create a new context and set the appropriate context parameters. Use the functions

mmr_context_create() (p. 47) and mmr_context_parameters() (p. 52).

3. Attach an output and set its output parameters. Use the functions mmr_output_attach() (p. 96)

and mmr_output_parameters() (p. 101). You can attach multiple outputs.

4. Attach the input and set the input parameters. Use the functions mmr_input_attach() (p. 84) and

mmr_input_parameters() (p. 89).

5. Start playback for the context by calling mmr_play() (p. 108).

The media starts to play. You can stop playback by calling mmr_stop() (p. 112).

Related Links

Multimedia Renderer API (p. 39)

The multimedia renderer API exposes the data types and functions you can use to connect to

mm-renderer, create contexts, configure inputs and outputs, control playback, and process events.

Play states

The possible play states of the context are:

Idle

No input is attached.

Stopped

Input is attached but is not playing.

Playing

Input is attached and is playing.

Note that there is no Paused play state. Paused playback is represented by a play speed of 0.

Play speed

In mm-renderer, the play speed is represented by an integer. Normal speed is represented by a value

of 1000, and 0 means paused. Depending on the context's input media, trick play speeds (i.e., negative,

slower than normal, or faster than normal) may not be supported.

Use the mmr_speed_set() (p. 110) function to change the current play speed. You can change the speed

when the state is stopped; mm-renderer simply saves the setting and applies it when playback restarts.

Copyright © 2015, QNX Software Systems Limited 27

Using the Multimedia Renderer

Seeking to positions

Use the mmr_seek() (p. 109) function to seek to a known position in a single track or a track within a

playlist. If the current context input is a track, simply specify the track position in milliseconds, for

example "2500". If the context input is a playlist, the position must be a string in the format

"99:9999", for example "2:1200", where the first number is the track position in the current playlist

and the second number is the number of milliseconds from the beginning of the specified track.

Related Links

mmr_seek() (p. 109)

Seek to a position

Managing video windows

You can render video to a display using the Screen Graphics Subsystem library.

The following example shows how to give mm-renderer a window group and window ID to use in creating

a window on the application's behalf, configure mm-renderer for audio and video output, and get a

handle to the window and use the Screen API functions to manipulate the output.

To begin, we define a window name to use as the window ID and retrieve the unique group name

created by screen_create_window_group(). We use these two properties to set the output URL,

video_device_url .

const char *window_name = "appwindow";

char *window_group_name;

int MAX_WINGRP_NAME_LEN = 49;

window_group_name = (char *)malloc(MAX_WINGRP_NAME_LEN);

// Create the video URL for mm-renderer

static char video_device_url[PATH_MAX];

// Create a window group.

// Pass NULL to generate a unique window group name.

if (screen_create_window_group(g_screen_win, NULL) != 0) {

return EXIT_FAILURE:

}

// Get the window group name.

rc = screen_get_window_property_cv(g_screen_win,

SCREEN_PROPERTY_GROUP,

PATH_MAX,

window_group_name);

if (rc != 0) {

fprintf(stderr,

"screen_get_window_property(SCREEN_PROPERTY_GROUP) failed.\n");

return EXIT_FAILURE;

}

rc = snprintf(video_device_url,

Copyright © 2015, QNX Software Systems Limited28

Using the Multimedia Renderer

PATH_MAX,

"screen:?winid=%s&wingrp=%s",

window_name,

window_group_name);

if (rc < 0) {

fprintf(stderr, "Error building video device URL string\n");

return EXIT_FAILURE;

}

else if (rc >= PATH_MAX) {

fprintf(stderr, "Video device URL too long\n");

return EXIT_FAILURE;

}

// Create the video context name for mm-renderer

static const char *video_context_name = "videoContext";

After the window group is created, we connect to mm-renderer and create a context. We then attach

the video output to the context by calling mmr_output_attach() (p. 96), specifying the URL variable

that we set up earlier. We use the same function to attach the audio output.

// Configure mm-renderer

mmr_connection = mmr_connect(NULL);

if (mmr_connection == NULL) {

fprintf(stderr, "Error connecting to renderer service: %s\n",

strerror(errno));

return EXIT_FAILURE;

}

mmr_context = mmr_context_create(mmr_connection,

video_context_name,

0,

S_IRWXU|S_IRWXG|S_IRWXO);

if (mmr_context == NULL) {

fprintf(stderr, "Error creating renderer context: %s\n",

strerror(errno));

return EXIT_FAILURE;

}

// Configure video and audio output

const mmr_error_info_t* errorInfo;

video_device_output_id = mmr_output_attach(mmr_context,

video_device_url,

"video");

if (video_device_output_id == -1) {

errorInfo = mmr_error_info(mmr_context);

fprintf(stderr, "Attaching video output produced error code \

Copyright © 2015, QNX Software Systems Limited 29

Using the Multimedia Renderer

%d\n", errorInfo->error_code);

return EXIT_FAILURE;

}

audio_device_output_id = mmr_output_attach(mmr_context,

audio_device_url,

"audio");

if (audio_device_output_id == -1) {

// Call mmr_error_info(), display an error message, and exit

...

}

Next, we retrieve the handle of the video window from the screen event received when the window is

created, and check that the ID of the window indicated in the event matches our output video window.

For more complicated applications, this is important so that we can distinguish between our video

window and another child window belonging to the same window group.

All functions used here are from the Screen API.

// Create the screen context, which is needed to retrieve the event

screen_context_t screen_ctx = 0;

if (screen_create_context(&screen_ctx,

SCREEN_APPLICATION_CONTEXT) != 0) {

fprintf(stderr, "Error creating screen context: %s\n",

strerror(errno));

return EXIT_FAILURE;

}

screen_event_t screen_event;

screen_create_event(&screen_event);

// Set a timeout of -1 to block until an event is received

screen_get_event(screen_ctx, screen_event, -1);

int event_type;

screen_get_event_property_iv(screen_event,

SCREEN_PROPERTY_TYPE,

&event_type);

// Check if it's a creation event and the video output window

// has not yet been initialized

if ((event_type == SCREEN_EVENT_CREATE) &&

(video_window == (screen_window_t)NULL)) {

char id[256];

rc = screen_get_event_property_pv(screen_event,

SCREEN_PROPERTY_WINDOW,

(void**)&video_window);

if (rc != 0) {

Copyright © 2015, QNX Software Systems Limited30

Using the Multimedia Renderer

fprintf(stderr, "Error reading event window: %s\n",

strerror(errno));

return EXIT_FAILURE;

}

rc = screen_get_window_property_cv(video_window,

SCREEN_PROPERTY_ID_STRING,

256,

id);

if (rc != 0) {

fprintf(stderr, "Error reading window ID: %s\n",

strerror(errno));

return EXIT_FAILURE;

}

if (strncmp(

id, window_group_name, strlen(window_group_name)) != 0)

fprintf(stderr, "Mismatch in window group names\n");

return EXIT_FAILURE;

}

After we have this handle, we can manipulate the video window directly with Screen API calls.

// Set the z-order of the video window to put it above or below

// the main window. Alternate between +1 and -1 to implement

// double-buffering to avoid flickering of output.

app_window_above = !app_window_above;

if (app_window_above) {

screen_val = 1;

}

else {

screen_val = -1;

}

if (screen_set_window_property_iv(video_window,

SCREEN_PROPERTY_ZORDER,

&screen_val) != 0) {

fprintf(stderr, "Error setting z-order of video window: %s\n",

strerror(errno));

return EXIT_FAILURE;

}

// Set the video window to be visible.

screen_val = 1;

if (screen_set_window_property_iv(video_window,

SCREEN_PROPERTY_VISIBLE,

&screen_val) != 0) {

Copyright © 2015, QNX Software Systems Limited 31

Using the Multimedia Renderer

fprintf(stderr, "Error making window visible: %s\n",

strerror(errno));

return EXIT_FAILURE;

}

...

Related Links

mmr_connect() (p. 41)

Connect to mm-renderer

mmr_context_create() (p. 47)

Create a context

mmr_output_attach() (p. 96)

Attach an output

mmr_error_info() (p. 60)

Get error information

Windows functionality in Screen

Contexts functionality in Screen

Events functionality in Screen

Copyright © 2015, QNX Software Systems Limited32

Using the Multimedia Renderer

../../com.qnx.doc.screen/topic/manual/cscreen_windows.html
../../com.qnx.doc.screen/topic/manual/cscreen_contexts.html
../../com.qnx.doc.screen/topic/manual/cscreen_events.html

Recording audio data

You can record audio content in mm-renderer by attaching the input to an audio capture device and

directing the output to a file instead of a device.

The following sample program shows how to give mm-renderer an input URL of type snd: to select

and configure an audio capture device (microphone), set an output URL type of file: to target a file,

and then start and stop playback to record captured audio content to the targetted file. The snd: input

URL format works only with the file: output type, so your code must obey this design.

You can record audio content for as long as you like, but you must ensure your client application's

output file can hold all the content you want to capture. The size of the generated output depends on

many settings, including the sampling rate and number of channels. This sample program records in

mono by specifying one channel (nchan=1) in the input URL. Depending on your platform, your

microphone device might have two recorders, so you could record in stereo by setting two channels

(nchan=2). You could also increase the sampling rate to attain the necessary audio quality, such as

using the standard CD sampling rate of 44.1 MHz (frate=44100000). For more information on the

available device options, see the list of URL parameters for audio capture devices (p. 86).

This code sample names an AMR file for the output, but mm-renderer supports other formats, such

as wideband AMR (see the list of supported output file formats (p. 97)).

void record_AMR_file()

{

mmr_connection_t *connection;

mmr_context_t *context;

const char* context_name = "AnyNameYouWant";

int output = 0;

const char* outputFile = "/tmp/testFile.amr";

int input = 0;

connection = mmr_connect(NULL);

if (connection) {

context = mmr_context_create(connection,

context_name,

0,

S_IRWXU);

if (context) {

// specify a file output so the audio content is

// not played but recorded in a file

output = mmr_output_attach(context,

outputFile,

"file");

// specify the audio device under /dev/snd you want to

// use for the recording, and the recording details

Copyright © 2015, QNX Software Systems Limited 33

Using the Multimedia Renderer

// (in this case, we use a sampling rate of 8000 Hz and

// 1 channel for mono (not stereo) recording)

input = mmr_input_attach(context,

"snd:/dev/snd/pcmPreferredc?nchan=1&frate=8000",

"track");

// start recording

mmr_play(context);

// delay for the length of time you want to record

// (in this case, 30 seconds)

sleep(30);

// stop recording

mmr_stop(context);

// clean up the context

mmr_input_detach(context);

mmr_output_detach(context, output);

mmr_context_destroy(context);

}

mmr_disconnect(connection);

} // if (connection)

} // function

Related Links

mmr_connect() (p. 41)

Connect to mm-renderer

mmr_context_create() (p. 47)

Create a context

mmr_output_attach() (p. 96)

Attach an output

mmr_error_info() (p. 60)

Get error information

mmr_input_attach() (p. 84)

Attach an input

mmr_play() (p. 108)

Start playing

mmr_stop() (p. 112)

Stop playing

Copyright © 2015, QNX Software Systems Limited34

Using the Multimedia Renderer

PPS objects

The multimedia renderer service stores a variety of information using Persistent Publish/Subscribe

(PPS) objects.

PPS objects are implemented as files in a special filesystem. The PPS objects created by mm-renderer
are located in subdirectories under the PPS root directory (/pps/services/multimedia/renderer).

These objects store information about:

• context state

• play state, warnings, and errors

• input metadata

• playlists

• supported file types

To get information from PPS objects, you can use the POSIX open() and read() functions, or you can

use functions from the PPS encoding and decoding API, which is explained in the PPS Developer's

Guide.

The attributes of some objects (e.g., the status object) might get refreshed very frequently, so you

shouldn't use delta mode to read these objects. For more information about delta mode, see the

“Subscription Modes” section in the PPS Developer's Guide.

Context state

Every time you create a context by calling mmr_context_create(), mm-renderer also creates a context

directory with the same name. For instance, creating a context named movie1 creates a directory

named /pps/services/multimedia/renderer/context/movie1.

Inside each context directory, mm-renderer creates several objects (files) that hold the state of the

context. When an input is attached to the context, additional objects may be created in the context

directory, depending on the input type.

The state of a context is represented by the following objects, where the # character indicates a numeric

value encoded as decimal:

param

Contains the parameters set with mmr_context_parameters().

output#

Created when an output is attached, deleted when it's detached. The # token is the output

ID returned by mmr_output_attach(). This object contains the URL, output type, and the

latest parameters set with mmr_output_parameters().

input

Populated when an input is attached, emptied when it's detached. This object contains the

URL, input type, and the latest parameters set with mmr_input_parameters().

Copyright © 2015, QNX Software Systems Limited 35

Using the Multimedia Renderer

status

A snapshot of the current status. This is potentially high bandwidth, so delta mode shouldn't

be used to read this object. This object holds information on the playback position, the

buffer capacity, and the buffer activity.

state

The play state. This object is intended to be read in delta mode, otherwise errors or warnings

may be lost. Depending on the play state, the state object may have these attributes:

state

playing, stopped, or idle.

speed

The current speed, in units of 1/1000th of normal speed.

warning

The most recent warning (which is deleted when playback is stopped).

warning_pos

The play position when the warning happened.

error

The most recent error code (which is deleted when playback is restarted).

error_pos

The play position when the error happened.

Play state, warnings, and errors

To detect changes in the play state, read the state object in delta mode.

The state object is updated based on input attachment and playback events, as follows:

• When there's no input attached, the state attribute (within the state object) is idle and no

other attributes are present.

• When an input is attached, the state attribute changes from idle to stopped.

• When playback begins, the state attribute changes from stopped to playing and any error

and error_pos attributes are deleted.

• When the end of media is reached, the state attribute changes from playing to stopped and

the error attribute is set to MMR_ERROR_NONE.

• When playback is stopped by a function call, no error code is published to the state object.

A warning is a problem that doesn't stop playback. If there's a warning, the state remains as playing

and the warning and warning_pos attributes are set.

An error is a problem that stops playback. If there's an error:

• the warning and warning_pos attributes, if any, are deleted

• the state attribute is set to stopped

• the error and error_pos attributes are set

Copyright © 2015, QNX Software Systems Limited36

Using the Multimedia Renderer

Input metadata

To get metadata for the main input, read the metadata object, which mm-renderer creates in the

corresponding PPS context directory when an input is attached to the context.

When the main input is a track played independently or a playlist, the metadata object stores attributes

that correspond to the main input's metadata fields. For example, the metadata object for an audio

track has attributes such as md_title_album, md_title_artist, and md_title_bitrate.

When the main input is an autolist, which is a single track formatted as a playlist, the metadata

object stores only the URL of the track.

To get metadata for media tracks that are playlist or autolist entries, read the q# objects, which are

stored in the same PPS context directory. There is one q# object for each playlist entry, where the #

token is the position of the track in the playlist (starting from 1). For autolists, there is only the q1

object. The metadata attributes for a track are set when the track begins to play.

Playlist window

When the context input is a playlist, mm-renderer creates additional PPS objects in the context directory.

These PPS objects specify the currently playing item and the items in front of and behind the current

item, up to a preconfigured maximum; this information is collectively known as the playlist window.

The following PPS objects represent the playlist window:

p#

Contains the track parameters for a playlist entry. There is one p# object for each playlist

entry, where the # token is the position of the track in the playlist (starting from 1). Each

such object contains the latest parameters passed into mmr_track_parameters() for the

corresponding track.

play-queue

Represents the size of the playlist window. The play-queue object has the following

attributes:

start

The index of the first p# item in the window.

end

The index of the last p# item in the window.

total

The total number of items in the playlist; this is set whenever the full length of

the playlist is known.

If you seek to a track outside of the playlist window, the indexes of the first and last items

may retain stale values for a short time after the seek command is issued. This is because

these attributes are updated asynchronously.

Copyright © 2015, QNX Software Systems Limited 37

Using the Multimedia Renderer

Supported file and MIME types

The /pps/services/multimedia/renderer/component directory contains the .all object, which lists the

supported file extensions and MIME types. To access this information, examine the following attributes

in the .all object:

audioencodeextensions

Lists supported filename extensions for file outputs, in a comma-separated list (e.g.,

m4a,wav).

mime

Lists allowed combinations of playable MIME types, in a comma-separated list (e.g.,

3gpp,video).

Applications should be prepared to merge value sets listed in multiple instances of the same

attribute.

Copyright © 2015, QNX Software Systems Limited38

Using the Multimedia Renderer

Chapter 3
Multimedia Renderer API

The multimedia renderer API exposes the data types and functions you can use to connect to

mm-renderer, create contexts, configure inputs and outputs, control playback, and process events.

To play media with mm-renderer, your client application must first connect to the service. Next, it can

create a context to manage the media flow from an input to one or more outputs. It can also specify

parameters for the context, its input, and its outputs. After the parameters have been configured, your

client can issue media playback commands; for example, to start and stop playback.

The API can deliver events, which indicate playback state changes, new input and output attachments,

parameter updates, or errors. An application can read information on the latest event from a

special-purpose data type and then perform the necessary processing.

The header file that defines most of the API functions, renderer.h, is located in

${QNX_TARGET}/usr/include/mm/ on the development system (not the target). The enumerated error codes

and most of the API data types are defined in types.h, which is located in

${QNX_TARGET}/usr/include/mm/renderer/. This same subdirectory stores events.h, which defines the

event-processing functions and data types.

Copyright © 2015, QNX Software Systems Limited 39

Connection management

You must connect to mm-renderer before you can use it to define contexts, configure inputs and

outputs, and issue playback commands.

The mmr_connect() function returns a valid connection handle, when successful. This handle must

be passed in to the subsequent API calls for creating or opening a context. When the context is created

or opened, it returns another handle that you must use for all media operations related to that context.

The connection handle isn't needed again until you're finished with the connection. At this point, you

must close the connection by calling mmr_disconnect().

Copyright © 2015, QNX Software Systems Limited40

Multimedia Renderer API

mmr_connect()

Connect to mm-renderer

Synopsis:

#include <mm/renderer.h>

mmr_connection_t* mmr_connect(const char *name)

Arguments:

name

The name of the mm-renderer service to connect to (use NULL for the default service).

Library:
mmrndclient

Description:

Connect to mm-renderer, using the specified name if name isn't NULL, returning a valid connection

handle on success.

Returns:

A connection handle, or NULL on failure (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 41

Multimedia Renderer API

mmr_connection_t

The mm-renderer connection handle type

Synopsis:

#include <mm/renderer.h>

typedef struct mmr_connection mmr_connection_t;

Library:
mmrndclient

Description:

The mmr_connection_t structure is a private data type representing the connection to mm-renderer.

Classification:

QNX Neutrino

Copyright © 2015, QNX Software Systems Limited42

Multimedia Renderer API

mmr_disconnect()

Disconnect from mm-renderer

Synopsis:

#include <mm/renderer.h>

void mmr_disconnect(mmr_connection_t *connection)

Arguments:

connection

An mm-renderer connection handle.

Library:
mmrndclient

Description:

Disconnect from mm-renderer. Close any existing context handles associated with the connection being

closed and free their memory. You shouldn't use these handles again, not even in an API call to close

them. If any of them are primary handles, their contexts also get destroyed.

The same happens in terms of contexts being destroyed if your application exits without explicitly

disconnecting. This means you don't have to clean up old contexts when you restart the application.

Each context handle is associated with the connection handle used to create it. This means that if you

have multiple connections to mm-renderer, calling mmr_disconnect() to close one of those connections

doesn't necessarily close all your context handles.

This function is asynchronous and may return before the destruction of any related contexts is complete.

Calling mmr_context_destroy() (p. 49) for each context associated with the connection ensures that

the context is destroyed before returning.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 43

Multimedia Renderer API

Context management

Each mm-renderer context manages a separate media flow independently of other contexts. The media

flow is determined by the input and the outputs that you attach to the context as well as the input and

output parameters. You can also set context parameters, which are independent of the media files

being played.

To create a context, call mmr_context_create(). Depending on the mm-renderer configuration, you may

be able to open an existing context by calling mmr_context_open(). Both of these functions return a

context handle that you must pass in to subsequent API calls to perform media operations on the same

context.

The sequence of API calls needed to access a context, set its parameters, define an input and output

(and set their parameters), and start playback is outlined in “Playing media (p. 27)”.

When you're finished using a context, you must close it to properly free resources. You may want to or

have to destroy the context in addition to closing it, based on your application needs and mm-renderer
configuration. The behavior of the mm-renderer service when closing context handles is complex, as

explained in detail in “Working with contexts (p. 24)”.

Copyright © 2015, QNX Software Systems Limited44

Multimedia Renderer API

mmr_command_send()

Send a remote control command to the context

Synopsis:

#include <mm/renderer.h>

int mmr_command_send(mmr_context_t *ctxt, const char *cmd)

Arguments:

ctxt

A context handle.

cmd

The command to send.

Library:
mmrndclient

Description:

Send a remote control command to the context. The commands available depend on the plugin in use.

This function is offered for future use; currently, no commands are defined.

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 45

Multimedia Renderer API

mmr_context_close()

Close a context

Synopsis:

#include <mm/renderer.h>

int mmr_context_close(mmr_context_t *ctxt)

Arguments:

ctxt

A context handle.

Library:
mmrndclient

Description:

Close and invalidate the context handle. The handle passed to mmr_context_close() always gets closed

and becomes invalid, even if the function returns an error. If the primary handle (which was returned

by mmr_context_create()) is passed in, the associated context might be destroyed, depending on the

configuration. If this is the case, the function fails and sets the global variable errno to EPERM.

Returns:

Zero on success, -1 on failure (check errno). The handle becomes invalid either way.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Related Links

Working with contexts (p. 24)

Contexts define media flows from an input to one or many outputs. You must configure a context before

you can start playing media content.

Copyright © 2015, QNX Software Systems Limited46

Multimedia Renderer API

mmr_context_create()

Create a context

Synopsis:

#include <mm/renderer.h>

mmr_context_t* mmr_context_create(mmr_connection_t *connection,

const char *name,

unsigned flags,

mode_t mode)

Arguments:

connection

An mm-renderer connection handle.

name

The name of the context. This must be a valid filename and will show up in the pathname

space as a directory.

flags

Must be zero. No flags are defined for now.

mode

Permission flags controlling which processes can access the context. These flags are specified

in a standard POSIX permissions bitfield.

The w bits control which processes can open secondary handles to access the context. The

r and x bits provide access to mm-renderer events related to the context.

In this bitfield, the user permissions apply to the caller and to any process with the same

effective user ID (euid). You must set these permissions appropriately to grant your

application (or other applications running with the same euid) sufficient access to the

context being created. The group permissions apply to processes with an effective group ID

(egid) or a supplementary group ID matching the caller's egid. The other permissions

apply to all other processes.

Library:
mmrndclient

Description:

Create and open a new context with the specified name. Fail if a context with that name already exists.

The name must be a valid filename and will show up as a directory in the pathname space, with its

file permissions set based on the mode argument. Note that there's not a direct mapping between the

Copyright © 2015, QNX Software Systems Limited 47

Multimedia Renderer API

value given in mode and the file permissions assigned to the context directory. For an explanation of

how the permissions specified in the function call are interpreted, see the mode (p. 47) argument.

When successful, the function returns a handle, called the primary handle, for accessing the newly

created context. Depending on your configuration, you may be able to create any number of secondary

handles by calling mmr_context_open() (p. 50).

To avoid memory leaks, every handle opened with mmr_context_create() needs to be closed, either

explicitly through an API call or implicitly by terminating the process. The mm-renderer configuration

also determines whether closing the primary handle also destroys the context. If this option is set and

you do close the primary handle of a context, you can no longer use any secondary handles to that

context, so you must close those handles by calling mmr_context_close() (p. 46) on each one. If this

option isn't set, you can call mmr_context_close() to close the primary handle without destroying the

context, which lets you keep using that context by accessing it with secondary handles.

Returns:

A handle on success, or a null pointer on failure (check errno).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Related Links

Working with contexts (p. 24)

Contexts define media flows from an input to one or many outputs. You must configure a context before

you can start playing media content.

Copyright © 2015, QNX Software Systems Limited48

Multimedia Renderer API

mmr_context_destroy()

Destroy a context

Synopsis:

#include <mm/renderer.h>

int mmr_context_destroy(mmr_context_t *ctxt)

Arguments:

ctxt

A context handle.

Library:
mmrndclient

Description:

Destroy the context the handle refers to and close the handle. Implicitly stop any playback and detach

any input or outputs. If any other handles to this context still exist, attempts to use them will fail. At

this point, you should close those handles by calling mmr_context_close() on each one.

In addition to calling mmr_context_destroy(), you can destroy a context in these ways:

• calling mmr_context_close() using the primary handle (if your configuration disallows orphan

handles)

• calling mmr_disconnect() (if you have the primary handle)

• terminating the process (if you have the primary handle)

Returns:

Zero on success, -1 on failure (check errno). The handle becomes invalid either way.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Related Links

Working with contexts (p. 24)

Contexts define media flows from an input to one or many outputs. You must configure a context before

you can start playing media content.

Copyright © 2015, QNX Software Systems Limited 49

Multimedia Renderer API

mmr_context_open()

Open an existing context

Synopsis:

#include <mm/renderer.h>

mmr_context_t* mmr_context_open(mmr_connection_t *connection,

const char *name)

Arguments:

connection

An mm-renderer connection handle.

name

The context name.

Library:
mmrndclient

Description:

Open a handle to an existing context. The handle returned by this function is called a secondary handle.

Whether this operation is allowed depends on the options that you define for the mm-renderer process

(for details, see “mm-renderer command line (p. 22)”). If you set these options to disallow the opening

of secondary handles, this function fails and sets the global variable errno to EPERM. If these options

allow the opening of secondary handles, you can open as many as you like, and the function will return

a new handle with each successful call.

To avoid memory leaks, every handle opened with mmr_context_open() needs to be closed, either

explicitly through an API call or implicitly by terminating the process.

Returns:

A handle on success, or a null pointer on failure (check errno).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited50

Multimedia Renderer API

Related Links

Working with contexts (p. 24)

Contexts define media flows from an input to one or many outputs. You must configure a context before

you can start playing media content.

Copyright © 2015, QNX Software Systems Limited 51

Multimedia Renderer API

mmr_context_parameters()

Set context parameters

Synopsis:

#include <mm/renderer.h>

int mmr_context_parameters(mmr_context_t *ctxt, strm_dict_t *parms)

Arguments:

ctxt

A context handle.

parms

A reference to a dictionary containing the context parameters to set (must not be NULL).

Any previous parameters are overridden.

The strm_dict_t object becomes API property after this call, even if the call fails. You should

not use or destroy the dictionary after passing it to this function.

Library:
mmrndclient

Description:

Set parameters associated with the specified context. The applicable parameters and their types and

values are implementation-specific. For example, different input and output types may require different

parameters associated with the context. In general, the following parameter is supported:

updateinterval

Allows an application to request a particular frequency in status updates from mm-renderer.
How accurately this delivery reflects the updateinterval setting depends on the plugin

handling the media flow. Currently, this parameter is supported only for the MMF audio/video

player routing plugin. The default update interval is 1000 ms, but your client code should

dynamically adjust this parameter based on the application's state, such as fullscreen versus

minimized versus when the screen is off. You can also override this parameter in the

configuration file.

QNX Neutrino RTOS supports the following parameters that map to libcurl options:

• OPT_VERBOSE

• OPT_CONNECTTIMEOUT_MS

• OPT_LOW_SPEED_LIMIT

• OPT_LOW_SPEED_TIME

• OPT_USERAGENT

• OPT_USERNAME

Copyright © 2015, QNX Software Systems Limited52

Multimedia Renderer API

• OPT_PASSWORD

• OPT_PROXYUSERNAME

• OPT_PROXYPASSWORD

• OPT_COOKIE

• OPT_COOKIEFILE

• OPT_COOKIEJAR

• OPT_COOKIESESSION

• OPT_CAINFO

• OPT_CAPATH

• OPT_SSL_VERIFYPEER

• OPT_SSL_VERIFYHOST

• OPT_PROXY

• OPT_NOPROXY

• OPT_HTTPPROXYTUNNEL

• OPT_PROXYPORT

• OPT_PROXYTYPE

• OPT_PROXYAUTH

• OPT_HTTPAUTH

• OPT_HTTPHEADER

• OPT_DNSCACHETIMEOUT

QNX Neutrino RTOS supports the following parameters that map to socket options (see the getsockopt()

function in the C Library Reference for more information):

• OPT_SO_RCVBUF

• OPT_SO_SNDBUF

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Related Links

Defining Parameters (p. 26)

Parameters allow you to set various properties that influence how media files are accessed and rendered

during playback.

strm_dict_t (p. 131)

Dictionary object type

Copyright © 2015, QNX Software Systems Limited 53

Multimedia Renderer API

mmr_context_t

The mm-renderer context handle type

Synopsis:

#include <mm/renderer.h>

typedef struct mmr_context mmr_context_t;

Library:
mmrndclient

Description:

The mmr_context_t structure is a private data type representing a context handle. Your application

can monitor changes to the context state by using the event API functions (p. 63).

Classification:

QNX Neutrino

Copyright © 2015, QNX Software Systems Limited54

Multimedia Renderer API

Error information

The mm-renderer service stores information about any error that occurs when an API call is made.

When requested, this error information is returned in a structure that includes a code for the

mm-renderer error type and other information specific to either the media protocol used or to the

underlying POSIX error.

It's good practice to check for errors after each API call, to promptly learn of any problems with the

media configuration or playback. You can do this by examining each function call's return code and if

it indicates failure (e.g., by a non-zero value, often -1), calling mmr_error_info() to get information

about the error that occurred. The action to perform following a given error type is a design choice.

Copyright © 2015, QNX Software Systems Limited 55

Multimedia Renderer API

mm_error_code_t

Error codes set by mm-renderer API functions

Synopsis:

#include <mm/renderer/types.h>

typedef enum mm_error_code {

MMR_ERROR_NONE,

MMR_ERROR_UNKNOWN,

MMR_ERROR_INVALID_PARAMETER,

MMR_ERROR_INVALID_STATE,

MMR_ERROR_UNSUPPORTED_VALUE,

MMR_ERROR_UNSUPPORTED_MEDIA_TYPE,

MMR_ERROR_MEDIA_PROTECTED,

MMR_ERROR_UNSUPPORTED_OPERATION,

MMR_ERROR_READ,

MMR_ERROR_WRITE,

MMR_ERROR_MEDIA_UNAVAILABLE,

MMR_ERROR_MEDIA_CORRUPTED,

MMR_ERROR_OUTPUT_UNAVAILABLE,

MMR_ERROR_NO_MEMORY,

MMR_ERROR_RESOURCE_UNAVAILABLE,

MMR_ERROR_MEDIA_DRM_NO_RIGHTS,

MMR_ERROR_DRM_CORRUPTED_DATA_STORE,

MMR_ERROR_DRM_OUTPUT_PROTECTION,

MMR_ERROR_DRM_OPL_HDMI,

MMR_ERROR_DRM_OPL_DISPLAYPORT,

MMR_ERROR_DRM_OPL_DVI,

MMR_ERROR_DRM_OPL_ANALOG_VIDEO,

MMR_ERROR_DRM_OPL_ANALOG_AUDIO,

MMR_ERROR_DRM_OPL_TOSLINK,

MMR_ERROR_DRM_OPL_SPDIF,

MMR_ERROR_DRM_OPL_BLUETOOTH,

MMR_ERROR_DRM_OPL_WIRELESSHD,

MMR_ERROR_DRM_OPL_RESERVED_LAST =

MMR_ERROR_DRM_OPL_WIRELESSHD + 4,

MMR_ERROR_MEDIA_DRM_EXPIRED_LICENSE,

MMR_ERROR_PERMISSION,

MMR_ERROR_COUNT,

} mm_error_code_t;

Copyright © 2015, QNX Software Systems Limited56

Multimedia Renderer API

Data:

MMR_ERROR_NONE

No error has occurred. This error code is used for the EOF event but never returned as the

error code from an API call.

MMR_ERROR_UNKNOWN

An unexpected error.

MMR_ERROR_INVALID_PARAMETER

An invalid parameter, such as an invalid output ID or a seek string that's incorrectly formatted

or out of range.

MMR_ERROR_INVALID_STATE

An illegal operation given the context state, such as attempt to play or seek when no input

is attached, to change the playlist when playback was stopped, or to access the context

after it's been destroyed.

MMR_ERROR_UNSUPPORTED_VALUE

An unrecognized input or output type or an out-of-range speed setting.

MMR_ERROR_UNSUPPORTED_MEDIA_TYPE

An unrecognized data format.

MMR_ERROR_MEDIA_PROTECTED

The file is DRM-protected and either it uses an unsupported DRM scheme or there's a DRM

error not corresponding to any of the errors listed below.

MMR_ERROR_UNSUPPORTED_OPERATION

An illegal operation. This error is returned if you try to seek or to set the playback speed on

media that doesn't allow it, or you try to attach an output after attaching the input but the

underlying media doesn't support that action sequence.

MMR_ERROR_READ

An I/O error at the source.

MMR_ERROR_WRITE

An I/O error at the sink.

MMR_ERROR_MEDIA_UNAVAILABLE

mm-renderer can't open the source.

MMR_ERROR_MEDIA_CORRUPTED

mm-renderer found corrupt data on the media.

MMR_ERROR_OUTPUT_UNAVAILABLE

mm-renderer can't write to the output (possibly because the output URL or type doesn't

match any supported sink).

Copyright © 2015, QNX Software Systems Limited 57

Multimedia Renderer API

MMR_ERROR_NO_MEMORY

Insufficient memory to perform the requested operation.

MMR_ERROR_RESOURCE_UNAVAILABLE

A required resource such as an encoder or an output feed is presently unavailable.

MMR_ERROR_MEDIA_DRM_NO_RIGHTS

The client lacks the rights to play the file.

MMR_ERROR_DRM_CORRUPTED_DATA_STORE

The DRM data store is corrupted.

MMR_ERROR_DRM_OUTPUT_PROTECTION

A DRM output protection mismatch on an unspecified output.

MMR_ERROR_DRM_OPL_HDMI

A DRM output protection mismatch on an HDMI output.

MMR_ERROR_DRM_OPL_DISPLAYPORT

A DRM output protection mismatch on a DISPLAYPORT output.

MMR_ERROR_DRM_OPL_DVI

A DRM output protection mismatch on a DVI output.

MMR_ERROR_DRM_OPL_ANALOG_VIDEO

A DRM output protection mismatch on a video ANALOG output (e.g., S-VIDEO, COMPOSITE,

RGB, RGBHW, YPbPr).

MMR_ERROR_DRM_OPL_ANALOG_AUDIO

A DRM output protection mismatch on an audio ANALOG output (e.g., HEADPHONE,

SPEAKER OUT).

MMR_ERROR_DRM_OPL_TOSLINK

A DRM output protection mismatch on a TOSLINK output.

MMR_ERROR_DRM_OPL_SPDIF

A DRM output protection mismatch on an S/PDIF output.

MMR_ERROR_DRM_OPL_BLUETOOTH

A DRM output protection mismatch on a BLUETOOTH output.

MMR_ERROR_DRM_OPL_WIRELESSHD

A DRM output protection mismatch on a WIRELESSHD output.

MMR_ERROR_DRM_OPL_RESERVED_LAST

Identifier marking the end-of-range for MMR_ERROR_DRM_OPL_* values.

Copyright © 2015, QNX Software Systems Limited58

Multimedia Renderer API

MMR_ERROR_MEDIA_DRM_EXPIRED_LICENSE

A license for the DRM file was found but has expired, either because the play count has

been depleted or the end time has passed.

MMR_ERROR_PERMISSION

A playback permission error (e.g., user prohibition, region mismatch).

MMR_ERROR_COUNT

An end-of-list identifier. Also indicates the number of distinct error codes.

Library:
mmrndclient

Classification:

QNX Neutrino

Copyright © 2015, QNX Software Systems Limited 59

Multimedia Renderer API

mmr_error_info()

Get error information

Synopsis:

#include <mm/renderer.h>

const mmr_error_info_t* mmr_error_info(mmr_context_t *ctxt)

Arguments:

ctxt

A context handle.

Library:
mmrndclient

Description:

This function gets error information. It returns a pointer to an internal buffer containing any error

information related to the most recent API call made using the same context handle. The pointer and

the error information it points to are valid only until another API call is made.

Returns:

A pointer to the error information, or a null pointer if the most recent API call succeeded.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited60

Multimedia Renderer API

mmr_error_info_t

Error information for mm-renderer

Synopsis:

#include <mm/renderer/types.h>

typedef struct mmr_error_info {

uint32_t error_code;

char extra_type[20];

int64_t extra_value;

char extra_text[256];

} mmr_error_info_t;

Data:

uint32_t error_code

One of the mm_error_code_t (p. 56) constants.

char extra_type[20]

A short string identifying the API or protocol that defines the meaning of extra_value , such

as "errno", "http", or "mmf".

int64_t extra_value

An error number according to extra_type .

char extra_text[256]

Free-form text describing the error. This may or may not have a format formally defined by

a specification. For example, when extra_type is "http", this field contains an HTTP server

response string.

Library:
mmrndclient

Description:

The mmr_error_info_t structure contains error information generated by mm-renderer functions. Use

the function mmr_error_info() to retrieve error information for a particular context and function call.

This multifield structure allows plugins to return protocol- or API-specific error information in addition

to the MMR error code. The extra_type string is a tag that specifies how to interpret the extra_value

and extra_text fields.

The values of extra_type currently supported and the associated contents of the other two fields are

as follows:

Copyright © 2015, QNX Software Systems Limited 61

Multimedia Renderer API

extra_textextra_valueextra_type

Usually empty, possibly some descriptive text0"" (empty)

Usually the result of strerror(extra_value),

but possibly something more descriptive

An errno value"errno"

Usually empty, but possibly something more

descriptive

One of the MMF-specific error codes (not a

valid errno)

"mmf"

An HTTP server responseAn HTTP response code"http"

The corresponding libcurl error messageA libcurl error code (but not

CURLE_HTTP_RETURNED_ERROR)

"libcurl"

Classification:

QNX Neutrino

Copyright © 2015, QNX Software Systems Limited62

Multimedia Renderer API

Events

The mm-renderer service can report events so you can monitor and react to changes in playback activity,

input and output attachments to a context, and any errors that might occur.

The event-processing support includes functions for arming the notification of an mm-renderer event,

waiting until an event occurs, and retrieving information on the latest event. The event information is

stored in the mmr_event_t data type and includes but is not limited to:

• the event type

• the new context state

• the current playback speed

• a warning string, when applicable

• detailed error information, when applicable

Using this API functionality, you can process events in an automated way without having to access

and parse status files to keep up with the state of the mm-renderer service. You can instead write an

event-processing loop to continuously monitor and react to events by storing the necessary data and

performing follow-up actions.

Copyright © 2015, QNX Software Systems Limited 63

Multimedia Renderer API

mmr_event_arm()

Set a sigevent to deliver when a new event becomes available

Synopsis:

#include <mm/renderer/events.h>

int mmr_event_arm(mmr_context_t *ctxt, struct sigevent const *sev)

Arguments:

ctxt

A context handle.

sev

A sigevent to send; set to NULL to disarm.

Library:
mmrndclient

Description:

Set a sigevent to deliver when a new mm-renderer event becomes available. The mmr_event_arm()

function is helpful if your program already has an event-processing loop that uses signals or pulses as

notifications and you simply want to add code that processes mm-renderer events. To do this, you

must first call mmr_event_arm() to request notification of the next mm-renderer event. Then, in the

new event-handling code, you must call mmr_event_get() (p. 68) to retrieve the event information.

Because mmr_event_arm() enables notification of only one event, you must call mmr_event_arm()

repeatedly if you want to receive a sigevent for each mm-renderer event that occurs. The function is

non-blocking because although it enables notification of an event, it doesn't wait for the event to occur.

If mm-renderer already has an event waiting when you call mmr_event_arm(), the function doesn't arm

a sigevent but immediately returns a value greater than zero. If you receive such a value, you must call

mmr_event_get() and process the event.

Occasionally, the mmr_event_get() function can't retrieve any meaningful event data and instead returns

the MMR_EVENT_NONE event. This can happen if the sigevent wasn't armed (because an event was

already waiting) or if the sigevent was armed and then delivered by the system (because an event

occurred after the last mmr_event_arm() call). For an example of a situation when MMR_EVENT_NONE

might be returned, see mmr_event_wait() (p. 80).

Returns:

A positive number if the sigevent isn't armed, zero on success, or -1 on failure (check errno).

Copyright © 2015, QNX Software Systems Limited64

Multimedia Renderer API

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

No, except when

using different

context handles

Thread

Related Links

mmr_event_t (p. 70)

Information about an mm-renderer event

Copyright © 2015, QNX Software Systems Limited 65

Multimedia Renderer API

mmr_event_data_set()

Set user data for the dictionary returned with the last event

Synopsis:

#include <mm/renderer/events.h>

int mmr_event_data_set(mmr_context_t *ctxt, void *usrdata)

Arguments:

ctxt

A context handle.

usrdata

A pointer to the user data to associate with the dictionary.

Library:
mmrndclient

Description:

Set a pointer to the user data to associate with the dictionary returned with the last event. The dictionary

is stored in the mmr_event_t structure's data field and contains all the mm-renderer properties reported

by the event.

Some event types, including STATE, ERROR, and WARNING, share a single dictionary and therefore

have a common user data pointer. So, if you set the user data after receiving, say, a STATE event, the

same user data pointer is returned with any subsequent STATE, ERROR, or WARNING event. Other

event types, including METADATA, OUTPUT, and TRKPAR, each have multiple dictionaries,

distinguished by an index stored in the mmr_event_t details field. So, if you set the user data after

receiving say, a METADATA event with an index of 2, the same user data is returned only for other

METADATA events whose index is also 2.

Returns:

Zero on success, or -1 if the event was MMR_EVENT_NONE or a deletion.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

Copyright © 2015, QNX Software Systems Limited66

Multimedia Renderer API

Safety:

No, except when

using different

context handles

Thread

Related Links

mmr_event_t (p. 70)

Information about an mm-renderer event

Copyright © 2015, QNX Software Systems Limited 67

Multimedia Renderer API

mmr_event_get()

Get the next available event

Synopsis:

#include <mm/renderer/events.h>

const mmr_event_t* mmr_event_get(mmr_context_t *ctxt)

Arguments:

ctxt

A context handle.

Library:
mmrndclient

Description:

Get the next available event. The function returns an mmr_event_t structure, which contains detailed

event information such as the new context state (see mmr_event_t (p. 70) for details). Typically, you

would call this function within an event-processing loop, after calling either mmr_event_arm() (p. 64)

or mmr_event_wait() (p. 80).

The data returned in the mmr_event_t structure is valid only until the next mmr_event_get() call. If

you want to keep the data longer, copy the mmr_event_t contents into other program variables, cloning

any strm_string_t fields within the structure.

In any playback state, mmr_event_get() might return the MMR_EVENT_NONE event.

Applications must gracefully handle this event, perhaps simply by ignoring it. For an example

of a situation when MMR_EVENT_NONE might be returned, see mmr_event_wait() (p. 80).

Returns:

A pointer to an event, or NULL on failure (check errno).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

No, except when

using different

context handles

Thread

Copyright © 2015, QNX Software Systems Limited68

Multimedia Renderer API

Related Links

mmr_event_t (p. 70)

Information about an mm-renderer event

Copyright © 2015, QNX Software Systems Limited 69

Multimedia Renderer API

mmr_event_t

Information about an mm-renderer event

Synopsis:

#include <mm/renderer/events.h>

typedef struct mmr_event {

mmr_event_type_t type;

mmr_state_t state;

int speed;

union mmr_event::mmr_event_details details;

const strm_string_t *pos_obj;

const char *pos_str;

const strm_dict_t *data;

const char *objname;

void *usrdata;

} mmr_event_t;

Data:

type

The event type.

state

The new context state (valid even when type is MMR_EVENT_NONE).

speed

The playback speed (0 means paused).

details

The event details (varies by type).

pos_obj

The playback position when the event occurred, stored as a shareable string, for STATUS,

ERROR, and WARNING events; otherwise NULL.

pos_str

The playback position when the event occurred, stored as a string, for STATUS, ERROR,

and WARNING events; otherwise NULL.

The position is expressed in the same media-specific format used by mmr_seek() (p. 109)

(for single tracks, it's milliseconds; for playlists, it's tracknumber:milliseconds;

for autolists, it's 1:milliseconds).

Copyright © 2015, QNX Software Systems Limited70

Multimedia Renderer API

data

The full set of mm-renderer properties reported by the event, stored in a dictionary object.

When this field is NULL, the set of properties no longer exists; for example, the input

parameters, URL, and type are deleted when the input is detached.

objname

The name of the internal mm-renderer object associated with this event.

usrdata

The user data associated with the dictionary; NULL if there's no user data.

Library:
mmrndclient

Description:

The mmr_event_t structure is returned by mmr_event_get() (p. 68) and provides information on the

last event. For all events, the structure contains the event type, the latest context state and playback

speed, and if applicable, the playback position when the event occurred. For certain event types, there

is additional information contained in the mmr_event::details and/or mmr_event::data fields.

Classification:

QNX Neutrino

Related Links

mmr_event_get() (p. 68)

Get the next available event

Copyright © 2015, QNX Software Systems Limited 71

Multimedia Renderer API

mmr_event::data

Properties reported by an mm-renderer event

Description:

All the mm-renderer properties reported by the event, represented as a dictionary object stored in the

data field of the mmr_event_t data structure. Some events, such as STATE, ERROR, and WARNING

events, have all their properties pre-parsed into other mmr_event_t fields, so no additional information

can be found in the data field. Other events, notably events that indicate updates to mm-renderer
parameters or metadata, have most of their properties stored in the data field, so clients must extract

this information from the dictionary.

Which properties are stored in the dictionary depends also on the configuration of the attached input

and outputs. For instance, the properties returned with events that indicate updates to input, track,

or output parameters consist of the latest parameters the client passed into the Client API, plus the

track URL and type. The properties returned with METADATA events vary with the input properties

(e.g., the file format, and whether the input is a track or playlist).

To look up parameter values in a strm_dict_t dictionary object by name, see the

strm_dict_find_value() (p. 119) function in the Dictionary Object API.

The event types with information stored in the data field, and the associated dictionary contents are

as follows:

DescriptionProperty nameEvent type

Playback position. This is the same value stored in the

pos_str (p. 70) field in the mmr_event_t structure.

positionMMR_EVENT_STATUS

Status or current activity of the buffer: buffering, playing,

or idle

bufferstatus

Buffer usage level, represented by two decimal numbers (in

milliseconds) separated by a slash: level/capacity

bufferlevel

Available only for audio recording. The current volume level

of the input signal against the maximum volume level,

separated by a slash: current_level/maximum_level

volume

Track namemd_title_nameMMR_EVENT_METADATA

Artist namemd_title_artist

Album namemd_title_album

Genre (classical, rock, funk, etc.)md_title_genre

Text information about the track. The source of this information

depends on the track format. For example, the information is

taken from the COMM frame for ID3 tracks.

md_title_comment

Track lengthmd_title_duration

Copyright © 2015, QNX Software Systems Limited72

Multimedia Renderer API

DescriptionProperty nameEvent type

Track number (if track was ripped from CD)md_title_track

Disc number (if track was ripped from multi-disc album)md_title_disc

Number of samples taken from input signal per time unit

(typically, a second) during recording. For audio content, this

md_title_samplerate

field refers to the audio sampling rate; for video, it's the video

frame rate.

Track bit rate. This is only an approximate value, based on the

total bit rate from all media streams in the input track and

ignoring any potential variation in bit rate throughout playback.

md_title_bitrate

Boolean attribute (either 0 or 1) indicating if track is

DRM-protected

md_title_protected

Boolean attribute (either 0 or 1) indicating if track supports

seeking

md_title_seekable

Boolean attribute (either 0 or 1) indicating if track can be

paused

md_title_pausable

Track media type (2 for video only, 4 for audio only, and 6 for

audio and video)

md_title_mediatype

Video width, in physical unitsmd_video_width

Video height, in physical unitsmd_video_height

Video width, in pixelsmd_video_pixel_width

Video height, in pixelsmd_video_pixel_height

Media file format in which video was recordedmd_video_capture_format

Playlist information fields contained in the

mmr_event_playlist (p. 75) structure, which is stored in the

details field of the mmr_event structure for playlist events.

All playlist information fieldsMMR_EVENT_PLAYLIST

Input parameters specified in the last call to

mmr_input_parameters() (p. 89), and the input URL and type

All input parameters and the

input URL and type

MMR_EVENT_INPUT

specified in the last call to mmr_input_attach() (p. 84). Some

input parameters may have been changed by mm-renderer.

Output parameters specified in the last call to

mmr_output_parameters() (p. 101), the output type specified

All output parameters and the

output URL and type

MMR_EVENT_OUTPUT

in the last call to mmr_output_attach() (p. 96), and the output

URL specified in the last call to either of these two functions.

Context parameters specified in the last call to

mmr_context_parameters() (p. 52).

All context parametersMMR_EVENT_CTXTPAR

Track parameters specified in the last call to

mmr_track_parameters() (p. 92).

All track parametersMMR_EVENT_TRKPAR

Copyright © 2015, QNX Software Systems Limited 73

Multimedia Renderer API

Related Links

mmr_event_type_t (p. 78)

The mm-renderer events reported by the API

strm_dict_find_value() (p. 119)

Find the value of a dictionary entry based on the entry's key (returns a string)

Copyright © 2015, QNX Software Systems Limited74

Multimedia Renderer API

mmr_event::details

Details for an mm-renderer event

Synopsis:

#include <mm/renderer/events.h>

union mmr_event::mmr_event_details {

struct mmr_event_state {

mmr_state_t oldstate;

int oldspeed;

} state;

struct mmr_event_error {

mmr_error_info_t info;

} error;

struct mmr_event_warning {

const char *str;

const strm_string_t *obj;

} warning;

struct mmr_event_metadata {

unsigned index;

} metadata;

struct mmr_event_trkparam {

unsigned index;

} trkparam;

struct mmr_event_playlist {

unsigned start;

unsigned end;

unsigned length;

} playlist;

struct mmr_event_output {

unsigned id;

} output;

} details;

Copyright © 2015, QNX Software Systems Limited 75

Multimedia Renderer API

Data:

state

Used when mmr_event.type is MMR_EVENT_STATE.

The mmr_event_state structure has these members:

mmr_state_t oldstate

The state before the event.

int oldspeed

The speed before the event.

error

Used when mmr_event.type is MMR_EVENT_ERROR.

The mmr_event_error structure has these members:

mmr_error_info_t info

The error information.

warning

Used when mmr_event.type is MMR_EVENT_WARNING.

The mmr_event_warning structure has these members:

const char* str

The warning string, as a C string.

const strm_string_t* obj

The warning string, as a strm_string_t (dictionary string).

metadata

Used when mmr_event.type is MMR_EVENT_METADATA.

The mmr_event_metadata structure has these members:

unsigned index

The playlist index for playlist-related events; otherwise, zero.

trkparam

Used when mmr_event.type is MMR_EVENT_TRKPAR.

The mmr_event_trkparam structure has these members:

unsigned index

The playlist index.

Copyright © 2015, QNX Software Systems Limited76

Multimedia Renderer API

playlist

Used when mmr_event.type is MMR_EVENT_PLAYLIST.

The mmr_event_playlist structure has these members:

unsigned start

The index of the first item in the playlist window.

unsigned end

The index of the last item in the playlist window.

unsigned length

The playlist length.

output

Used when mmr_event.type is MMR_EVENT_OUTPUT.

The mmr_event_output structure has these members:

unsigned id

The output ID.

Library:
mmrndclient

Classification:

QNX Neutrino

Related Links

mmr_event_type_t (p. 78)

The mm-renderer events reported by the API

Copyright © 2015, QNX Software Systems Limited 77

Multimedia Renderer API

mmr_event_type_t

The mm-renderer events reported by the API

Synopsis:

#include <mm/renderer/events.h>

typedef enum mmr_event_type {

MMR_EVENT_NONE,

MMR_EVENT_ERROR,

MMR_EVENT_STATE,

MMR_EVENT_OVERFLOW,

MMR_EVENT_WARNING,

MMR_EVENT_STATUS,

MMR_EVENT_METADATA,

MMR_EVENT_PLAYLIST,

MMR_EVENT_INPUT,

MMR_EVENT_OUTPUT,

MMR_EVENT_CTXTPAR,

MMR_EVENT_TRKPAR,

MMR_EVENT_OTHER,

} mmr_event_type_t;

Data:

MMR_EVENT_NONE

No pending events.

MMR_EVENT_ERROR

Playback has stopped due to an error or EOF.

MMR_EVENT_STATE

State or speed change, other than an error or EOF.

MMR_EVENT_OVERFLOW

Some state changes lost; the event contains the most recent state.

MMR_EVENT_WARNING

Warning event.

MMR_EVENT_STATUS

Status update (position, buffer level, etc).

Copyright © 2015, QNX Software Systems Limited78

Multimedia Renderer API

MMR_EVENT_METADATA

Metadata update for the attached input, or one track referenced by the attached input (such

as a playlist entry).

MMR_EVENT_PLAYLIST

Playlist window update.

MMR_EVENT_INPUT

An input has been attached or detached, or input parameters have changed.

MMR_EVENT_OUTPUT

An output has been attached or detached, or output parameters have changed.

MMR_EVENT_CTXTPAR

Context parameters have changed.

MMR_EVENT_TRKPAR

Track parameters for an individual track or a playlist entry have changed.

MMR_EVENT_OTHER

None of the above, but something has changed. You can typically ignore this event type.

Library:
mmrndclient

Description:

The enumerated type mmr_event_type_t defines all possible events that can be observed through the

Event API. Events include: changes to the context state or playback speed; updates of metadata or

the playlist window; and attachment and detachment of input and output devices.

To obtain the type of the last event, call mmr_event_get() and examine the type field in the mmr_event_t
structure returned by the function.

Classification:

QNX Neutrino

Related Links

mmr_event_get() (p. 68)

Get the next available event

Copyright © 2015, QNX Software Systems Limited 79

Multimedia Renderer API

mmr_event_wait()

Wait until an event is available

Synopsis:

#include <mm/renderer/events.h>

int mmr_event_wait(mmr_context_t *ctxt)

Arguments:

ctxt

A context handle.

Library:
mmrndclient

Description:

Wait for an event. This function usually blocks until an event occurs, at which point it unblocks and

you can call mmr_event_get() (p. 68) to get the event details.

Occasionally, mmr_event_wait() may unblock or not block at all even though no events are available.

For example, suppose a track enters the playlist range but then exits soon afterwards. The mm-renderer
service creates metadata for the track when it comes in range and this activity generates an event. If

the track exits the playlist range before the application calls mmr_event_get(), the track's metadata

and the corresponding event are deleted. In the subsequent call to mmr_event_get(), the function will

return the MMR_EVENT_NONE event.

Typically, you call mmr_event_wait() within an event-processing loop, right before you call

mmr_event_get().

Returns:

Zero on success, or -1 on failure (check errno).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

No, except when

using different

context handles

Thread

Copyright © 2015, QNX Software Systems Limited80

Multimedia Renderer API

Related Links

mmr_event_t (p. 70)

Information about an mm-renderer event

Copyright © 2015, QNX Software Systems Limited 81

Multimedia Renderer API

mmr_state_t

The context states

Synopsis:

#include <mm/renderer/events.h>

typedef enum mmr_state {

MMR_STATE_DESTROYED,

MMR_STATE_IDLE,

MMR_STATE_STOPPED,

MMR_STATE_PLAYING,

} mmr_state_t;

Data:

MMR_STATE_DESTROYED

The context has been destroyed.

MMR_STATE_IDLE

The context has no input.

MMR_STATE_STOPPED

The context has an input but is not playing.

MMR_STATE_PLAYING

The context is playing or paused.

Library:
mmrndclient

Description:

The enumerated type mmr_state_t defines the context states, which are based on the current input

and playback activity.

To obtain the context state following the latest API event, call mmr_event_get() and examine the state
field in the mmr_event_t structure returned by the function.

Classification:

QNX Neutrino

Related Links

mmr_event_get() (p. 68)

Get the next available event

Copyright © 2015, QNX Software Systems Limited82

Multimedia Renderer API

Input configuration

You can attach an input to the context by naming the URL of a track or playlist on a media device or

in the local filesystem. The acceptable URL formats vary with the input type. For some formats, you

can include parameters in the URL string, to specify settings such as the sampling rate for audio

capture devices.

A context can have only one input; if you call mmr_input_attach() once to attach an input and then

call it later to attach a new input without having called mmr_input_detach(), the first input gets

detached when the second one is attached.

With mmr_input_parameters(), you can instruct mm-renderer to repeat playback of a single track or

many tracks in sequence. For inputs that use the Audio Manager service, you can specify audio stream

characteristics. For HTTP-based inputs, you can configure settings for cookies, proxy servers, and

authentication credentials.

Finally, for playlists, you can override any of the input parameters (except the repeat setting) for

individual tracks within the playlist by calling mmr_track_parameters().

Copyright © 2015, QNX Software Systems Limited 83

Multimedia Renderer API

mmr_input_attach()

Attach an input

Synopsis:

#include <mm/renderer.h>

int mmr_input_attach(mmr_context_t *ctxt,

const char *url,

const char *type)

Arguments:

ctxt

A context handle.

url

The URL of the new input.

type

The input type. You must place quotes around the text naming the input type, which can

be one of the following:

track

One track played in isolation from the rest of the media

playlist

A track sequence, with ordering information and track metadata contained in a

playlist file

autolist

A single track formatted as a playlist; you can play the track continuously using

the repeat parameter

Library:
mmrndclient

Description:

Attach an input track or playlist. If the context already has an input, the function detaches it first.

The input type affects how mm-renderer responds to certain playback requests. For example, when

seeking to track positions using mmr_seek() (p. 109), you must specify the desired position differently

for each of the supported input types. Also, mmr_list_change() (p. 106) and

mmr_track_parameters() (p. 92) apply to "playlist" only.

Copyright © 2015, QNX Software Systems Limited84

Multimedia Renderer API

Which input types are supported depends on the configuration of mm-renderer; however, the playback

behavior for a given input type does not depend on the configuration.

Valid input URLs for the "track" and "autolist" input types are:

• An http: or https: URL containing the full path of an HTTP-accessible file or an HTTP stream.

When the URL refers to a file, the http: prefix is optional.

HTTP Live Streaming (HLS) is supported just as any HTTP stream, with the following caveats:

• For HLS realtime broadcast, the seek operation is disabled. Therefore, if your application issues

a seek command it will fail.

• Pause (play speed of 0) is supported but the playback may jump forward when resumed because

the current stream may have become unavailable.

• For HLS Video on Demand, the seek operation places the play position at the start of the video

chunk that is closest to the requested time. The pause operation works as expected.

The mm-renderer service supports HLS version 3, with media segments encoded as follows:

• Transport stream MPEG2-TS with H.264 Video, with either MP3 or AAC Audio (when the

appropriate codecs are available on the platform)

• Video only and audio only when embedded in the MPEG2-TS stream

For secure video and audio playback of HTTP streams, mm-renderer allows you to set

cookies, SSL, and authentication properties by defining context parameters (p. 52), input

parameters (p. 89), or track parameters (p. 92).

• An rtsp: URL naming an RTSP source, which will deliver video streamed over RTP. The source

is indicated by either a host name or an IP address, followed by the path. To authenticate with the

RTSP server, you can provide a username and password, separated by a colon and followed by the

AT sign, in front of the source:

rtsp://username:password@10.222.97.225/axis-media/media.amp

• An rtp: URL specifying a port on which to listen for a unicast RTP stream. The port number is

prefixed with the AT sign and a colon, as in this example:

rtp://@:49152

This will listen for an RTP stream on port 49152. This URL type is useful if you want to configure

a camera to stream to a QNX Neutrino host.

• A full pathname starting with a "/" character, with or without a file: prefix. The pathname may

refer to an audio or a video file.

• A file2b: URL containing the full pathname of a dynamically growing file (i.e., a progressive

download). Not all formats are supported. If parsing the file requires knowing its size or reading

more data than currently in the file, the input attachment operation may fail. If it succeeds, any

attempt to play from beyond the end of file will cause the playback to underrun. Your application

must pay attention to the buffering status and appropriately present the state to the user, depending

on whether the download is happening at the same time.

Copyright © 2015, QNX Software Systems Limited 85

Multimedia Renderer API

• An snd: URL targeting an audio capture device (microphone) whose device file is located in

/dev/snd. The URL can specify device configuration options in a comma-separated list, as follows:

snd:/dev/snd/pcmPreferredc?frate=44100&nchan=2

Supported options include:

• frate — the sampling rate, in Hertz

• frag_ms — the fragment size, in milliseconds

• nchan — the number of channels (1 for mono, 2 for stereo)

• depth — the number of bits per sample (e.g., 16)

• bsize — the preferred read size, in bytes

Currently, this URL format works only with the "file" output type. The resulting behavior is

identical to that for the audio: URL format except that the Audio Manager is bypassed, which

means you can't provide hints such as audio type to control audio routing. The advantage of the

snd: prefix is that you can use it on systems that don't have Audio Manager.

• An audio: URL naming an audio capture device (microphone) whose name is defined by the

AUDIO_DEVICE_NAMES set of string constants, which is listed in the Audio Manager Library

reference. The URL can specify any of the options supported for snd: URLs, for example:

audio:voice?nchan=1&frate=44100&depth=16

Currently, this URL format works only with the "file" output type. Client applications should use

audio:default to specify automated routing for the audio stream unless there's a good reason

to use one particular device. When a non-default device is named, the audio stream routing depends

solely on that device. In this case, the removal of the device could result in no audio being outputted

or an error returned to the client.

Not all audio devices may work with the current application. It's the client's responsibility

to determine if a particular device is supported before trying to use it. See the

mmr_output_attach() example (p. 98) for a demo of how to check if an audio device is

supported before configuring the audio routing.

Valid input URLs for the "playlist" input type are:

• A full pathname of an M3U playlist file, with or without a file: or http: prefix

• An SQL URL in the form sql:database?query=query , where database is the full path to the

database file, and query contains an SQL query that results in a single column containing URLs

in a form acceptable for the "track" input type. Note that any special characters in the query

must be URL-encoded (e.g., spaces encoded as %20).

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Copyright © 2015, QNX Software Systems Limited86

Multimedia Renderer API

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Example:
See the mmr_output_attach() example (p. 98) for a demo of how to select one audio device to use.

Related Links

mmr_output_attach() (p. 96)

Attach an output

AUDIO_DEVICE_NAMES

Copyright © 2015, QNX Software Systems Limited 87

Multimedia Renderer API

../../../com.qnx.doc.audiomanager.lib_ref/topic/audio_manager_device.h_defines.html

mmr_input_detach()

Detach an input

Synopsis:

#include <mm/renderer.h>

int mmr_input_detach(mmr_context_t *ctxt)

Arguments:

ctxt

A context handle.

Library:
mmrndclient

Description:

Detach any input. If the context is playing, stop it first. If there is no input already, this is a no-op.

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited88

Multimedia Renderer API

mmr_input_parameters()

Set input parameters

Synopsis:

#include <mm/renderer.h>

int mmr_input_parameters(mmr_context_t *ctxt, strm_dict_t *parms)

Arguments:

ctxt

A context handle.

parms

A reference to a dictionary containing the input parameters to set (must not be NULL). Any

previous parameters are overridden.

The strm_dict_t object becomes API property after this call, even if the call fails. You should

not use or destroy the dictionary after passing it to this function.

Library:
mmrndclient

Description:

Set parameters associated with the attached input.

Some mm-renderer plugins don't return errors when you provide unacceptable values for input

parameters. Instead, these plugins revert bad parameters to their previous values or to their default

values (for parameters that you set for the first time). To see which values were accepted or changed,

client applications can examine the parameters that the Event API returned.

The input type and the URL format determine which input parameters you can set. Some parameters

must be set before the input is attached, because setting them after attaching the input has no effect.

All input parameters are cleared when the input is detached, whether explicitly through a call to

mmr_input_detach() or implicitly when mmr_input_attach() is called to attach a new input, which

causes mm-renderer to detach the current input.

An individual playlist item isn't considered an input but the whole playlist is. For playlists, any

input parameters that you set will apply to the playlist file. To set parameters for individual

playlist items, you must use mmr_track_parameters().

The "playlist" and "autolist" input types support the following parameter:

repeat

Continuously replay the input. Acceptable values are "none" (default), "track", or "all".

Copyright © 2015, QNX Software Systems Limited 89

Multimedia Renderer API

When using the "autolist" or "track" input types with a URL that starts with audio:, you can

set one of the following two parameters:

audio_type

Classify the audio input based on its content (voice, ring tones, video chat, etc.). This

parameter provides a shortcut for setting the audio type, thereby simplifying your client

code. You can use this parameter instead of using the Audio Manager API to obtain an audio

manager handle, and then using that handle to set the audio type.

The audio type is specified as a string that's set to one of the audio types defined by

AUDIO_TYPE_NAMES, which is documented in the Audio Manager Library reference.

audioman_handle

Associate an audio manager handle with the audio stream that the current context manages.

To obtain a value for this parameter, call the audio_manager_get_handle() API function and

pass in the desired audio type.

You can then use this handle to change the audio type and other audio stream characteristics

through the Audio Manager API. For more information, refer to the audio routing functions

described in the Audio Manager Library reference.

When the input URL starts with http: or https:, you can set the following parameters that map to

libcurl options:

• OPT_VERBOSE

• OPT_CONNECTTIMEOUT_MS

• OPT_LOW_SPEED_LIMIT

• OPT_LOW_SPEED_TIME

• OPT_USERAGENT

• OPT_USERNAME

• OPT_PASSWORD

• OPT_PROXYUSERNAME

• OPT_PROXYPASSWORD

• OPT_COOKIE

• OPT_COOKIEFILE

• OPT_COOKIEJAR

• OPT_COOKIESESSION

• OPT_CAINFO

• OPT_CAPATH

• OPT_SSL_VERIFYPEER

• OPT_SSL_VERIFYHOST

• OPT_PROXY

• OPT_NOPROXY

• OPT_HTTPPROXYTUNNEL

• OPT_PROXYPORT

• OPT_PROXYTYPE

• OPT_PROXYAUTH

Copyright © 2015, QNX Software Systems Limited90

Multimedia Renderer API

• OPT_HTTPAUTH

• OPT_HTTPHEADER

• OPT_DNSCACHETIMEOUT

You can set these same libcurl options through the context parameters. For any options defined

in both parameter sets, the input parameter settings take precedence.

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Examples:
See the mmr_output_parameters() examples (p. 102) for demos on how to set each of the audio_type

and audioman_handle parameters.

Related Links

Defining Parameters (p. 26)

Parameters allow you to set various properties that influence how media files are accessed and rendered

during playback.

AUDIO_TYPE_NAMES

audio_manager_get_handle()

audio routing functions

strm_dict_t (p. 131)

Dictionary object type

Copyright © 2015, QNX Software Systems Limited 91

Multimedia Renderer API

../../../com.qnx.doc.audiomanager.lib_ref/topic/audio_manager_routing.h_defines.html
../../../com.qnx.doc.audiomanager.lib_ref/topic/audio_manager_get_handle.html
../../../com.qnx.doc.audiomanager.lib_ref/topic/manual/audio_manager_routing.h_functions_overview.html

mmr_track_parameters()

Set track parameters

Synopsis:

#include <mm/renderer.h>

int mmr_track_parameters(mmr_context_t *ctxt,

unsigned index,

strm_dict_t *parms)

Arguments:

ctxt

A context handle.

index

Zero to set the default parameters, or a nonzero index within the current playlist window.

parms

A reference to a dictionary containing the track parameters to set. Use NULL to reset the

parameters of the specified track to the default values assigned to track 0. Any previous

parameters are overridden.

The strm_dict_t object becomes API property after this call, even if the call fails. You should

not use or destroy the dictionary after passing it to this function.

Library:
mmrndclient

Description:

Set track parameters. This function can be used when the input type is "playlist" or "autolist".

When the input type is "track", this function has no effect.

For "playlist" inputs, index specifies the track that these parameters are applied to. The provided

index must be within range of the current playlist window or the function call will fail. An index of zero

specifies the default parameters given to a new track when it enters the playlist window.

For "autolist" inputs, any input parameters that you set before attaching the input are taken as

the initial track parameters (because the single track is the input). If you want to change them after

attaching the input, use mmr_track_parameters(). Changes to input parameters other than repeat are

ignored.

Some mm-renderer plugins don't return errors when you provide unacceptable values for track

parameters. Instead, these plugins revert bad parameters to their previous values or to their default

values (for parameters that you set for the first time). To see which values were accepted or changed,

client applications can examine the parameters that the Event API returned.

Copyright © 2015, QNX Software Systems Limited92

Multimedia Renderer API

When the input URL starts with audio:, you can set one of the following two parameters:

audio_type

Classify the audio track based on its content (voice, ring tones, video chat, etc.). This

parameter provides a shortcut for setting the audio type, thereby simplifying your client

code. You can use this parameter instead of using the Audio Manager API to obtain an audio

manager handle, and then using that handle to set the audio type.

The audio type is specified as a string that's set to one of the audio types defined by

AUDIO_TYPE_NAMES, which is documented in the Audio Manager Library reference.

audioman_handle

Associate an audio manager handle with the audio stream that the current context manages.

To obtain a value for this parameter, call the audio_manager_get_handle() API function and

pass in the desired audio type.

You can then use this handle to change the audio type and other audio stream characteristics

through the Audio Manager API. For more information, refer to the audio routing functions

described in the Audio Manager Library reference.

When the input URL starts with http: or https:, you can set the following parameters that map to

libcurl options:

• OPT_VERBOSE

• OPT_CONNECTTIMEOUT_MS

• OPT_LOW_SPEED_LIMIT

• OPT_LOW_SPEED_TIME

• OPT_USERAGENT

• OPT_USERNAME

• OPT_PASSWORD

• OPT_PROXYUSERNAME

• OPT_PROXYPASSWORD

• OPT_COOKIE

• OPT_COOKIEFILE

• OPT_COOKIEJAR

• OPT_COOKIESESSION

• OPT_CAINFO

• OPT_CAPATH

• OPT_SSL_VERIFYPEER

• OPT_SSL_VERIFYHOST

• OPT_PROXY

• OPT_NOPROXY

• OPT_HTTPPROXYTUNNEL

• OPT_PROXYPORT

• OPT_PROXYTYPE

• OPT_PROXYAUTH

• OPT_HTTPAUTH

Copyright © 2015, QNX Software Systems Limited 93

Multimedia Renderer API

• OPT_HTTPHEADER

• OPT_DNSCACHETIMEOUT

You can set these same libcurl options through the context or input parameters. For any options

defined in either the context or input parameters but also in the track parameters, the track

parameter settings take precedence.

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Examples:
See the mmr_output_parameters() examples (p. 102) for demos on how to set each of the audio_type

and audioman_handle parameters.

Related Links

Defining Parameters (p. 26)

Parameters allow you to set various properties that influence how media files are accessed and rendered

during playback.

AUDIO_TYPE_NAMES

audio_manager_get_handle()

audio routing functions

strm_dict_t (p. 131)

Dictionary object type

Copyright © 2015, QNX Software Systems Limited94

Multimedia Renderer API

../../../com.qnx.doc.audiomanager.lib_ref/topic/audio_manager_routing.h_defines.html
../../../com.qnx.doc.audiomanager.lib_ref/topic/audio_manager_get_handle.html
../../../com.qnx.doc.audiomanager.lib_ref/topic/manual/audio_manager_routing.h_functions_overview.html

Output configuration

You must attach an output to a context before attaching the input. An output is specified by naming

a URL. The acceptable URL format depends on the output type, which can be an audio device, video

device, or file. For video outputs, the URL string can configure settings of the output window.

A context can have multiple outputs; for instance, when playing video files, you can attach both a

video device and an audio device as outputs by making separate calls to mmr_output_attach(). Individual

outputs can be detached with mmr_output_detach().

With mmr_output_parameters(), you can set the volume for any audio output. For those outputs that

use the Audio Manager service, you can also specify audio stream characteristics. Note that the Screen

API, not the mm-renderer API, should be used for manipulating properties of video output. There are

no output parameters for file outputs.

Copyright © 2015, QNX Software Systems Limited 95

Multimedia Renderer API

mmr_output_attach()

Attach an output

Synopsis:

#include <mm/renderer.h>

int mmr_output_attach(mmr_context_t *ctxt,

const char *url,

const char *type)

Arguments:

ctxt

A context handle.

url

The URL of the new output.

type

The output type. Possible values are "audio", "video", and "file" (quotes are required).

Library:
mmrndclient

Description:

Attach an output to the context and return its output ID (a non-negative integer, unique for this context).

An output can be an audio or video device, a combined audio/video device (such as a DSP directly

connected to output hardware), or a file. The types of outputs attached to a context may affect the set

of operations that the context will allow. For instance, when "playing" to a file (i.e., ripping), seeking

or trick play (i.e., playing at non-normal speeds) may not be supported.

Although the API allows requesting multiple outputs of the same type, this may not be supported by

all player module implementations. Attaching or detaching outputs while the context has an input may

not be supported, either.

Valid URLs for the "audio" output type are in one of the following forms:

• snd:device , where device is the path of an audio output device, such as /dev/snd/pcmPreferredp.

This URL format produces behavior similar to the audio: format, except that the Audio Manager

is bypassed and so you can't provide hints such as the audio type to control audio routing. The

advantage of the snd: prefix is that you can use it on systems that don't have Audio Manager.

• audio:name , where name is one of the audio device names defined by the

AUDIO_DEVICE_NAMES set of string constants, which is listed in the Audio Manager Library

reference.

Copyright © 2015, QNX Software Systems Limited96

Multimedia Renderer API

The mm-renderer service opens the device named in the URL. Client applications should use

audio:default to specify automated routing for the audio stream unless there's a good reason

to use one particular device. When a non-default device is named, the audio stream routing depends

solely on that device. In this case, the removal of the device could result in no audio being outputted,

or an error returned to the client.

Not all defined audio devices may work with the current application. It is the client's

responsibility to determine if a particular device is supported before trying to use it. See

the example (p. 98) section for a demo of how to check if an audio device is supported

before configuring the audio routing.

Valid output URLs for the "video" output type are of the following form:

screen:?wingrp=window_group&

winid=window_id&nodstviewport=1&initflags=invisible

In the video URL:

• window_group is the window group name of the application's top-level window

• window_id is the window ID for the window where the video output will be rendered

• The parameter setting nodstviewport=1 is optional, and forces mm-renderer to never directly

modify the destination viewport of the window. This avoids conflicts between simultaneous

application manipulation and mm-renderer manipulation of the destination viewport.

• The parameter setting initflags=invisible is optional, and causes the window to be invisible

upon creation. This flag allows you to adjust window properties such as size, position, and z-order

before making it visible.

Valid output URLs for the "file" output type are of the form file:path , where path is the full

filepath. The file: prefix is optional. The following file types (and their extensions that can go in the

URL) are supported:

• Waveform Audio File Format (.wav)

• MPEG 4 Audio (.m4a)

• Adaptive Multi-Rate (.amr)

• 3GPP file format (.3gp)

• Adaptive Multi-Rate Wideband (.awb)

• Qualcomm PureVoice (.qcp)

Returns:

A non-negative output ID on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

Copyright © 2015, QNX Software Systems Limited 97

Multimedia Renderer API

Safety:

NoSignal handler

YesThread

Example:
Suppose you want mm-renderer to route the audio output to the "speaker" device. You can do this

as follows:

#include <mm/renderer.h>

#include <audio/audio_manager_device.h>

// Point the output URL to the default device

char audio_URL[100];

snprintf(audio_URL, 100, “audio:default”);

// Check if the speaker device is supported and

// connected to the system; if so, point the

// output URL to the speaker device

bool supported, connected;

if (audio_manager_is_device_supported(

AUDIO_DEVICE_SPEAKER,

&supported) == EOK

&& supported)

{

if (audio_manager_is_device_connected(

AUDIO_DEVICE_SPEAKER,

&connected) == EOK

&& connected)

{

sprintf(audio_URL, “audio:%s”,

audio_manager_get_device_name(

AUDIO_DEVICE_SPEAKER));

}

}

// Attach an audio output, routed to the

// chosen device

int outputID;

if (outputID = mmr_output_attach(context,

audio_URL, "audio") < 0)

{

// Call mmr_error_info() and do error handling

}

Copyright © 2015, QNX Software Systems Limited98

Multimedia Renderer API

You can make mm-renderer read the input audio from a particular device in a similar way, by substituting

the call to mmr_output_attach() with a call to mmr_input_attach(). The input URL would be of the

same form.

Related Links

AUDIO_DEVICE_NAMES

Copyright © 2015, QNX Software Systems Limited 99

Multimedia Renderer API

../../../com.qnx.doc.audiomanager.lib_ref/topic/audio_manager_device.h_defines.html

mmr_output_detach()

Detach an output

Synopsis:

#include <mm/renderer.h>

int mmr_output_detach(mmr_context_t *ctxt, unsigned output_id)

Arguments:

ctxt

A context handle.

output_id

An output ID.

Library:
mmrndclient

Description:

Detach the specified output.

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited100

Multimedia Renderer API

mmr_output_parameters()

Set output parameters

Synopsis:

#include <mm/renderer.h>

#include <audio/audio_manager_routing.h>

int mmr_output_parameters(mmr_context_t *ctxt,

unsigned output_id,

strm_dict_t *parms)

Arguments:

ctxt

A context handle.

output_id

An output ID.

parms

A reference to a dictionary containing the output parameters to set (must not be NULL).

Any previous parameters are overridden.

The strm_dict_t object becomes API property after this call, even if the call fails. You should

not use or destroy the dictionary after passing it to this function.

Library:
mmrndclient, audio_manager_lib

Description:

Set parameters for an output device. The acceptable parameter values depend on the plugins loaded

for the attached output and the attached input, if any. Unlike input and track parameters, the values

of output parameters won't be changed by mm-renderer plugins. If the provided values aren't supported

for the current output and input combination, the function call fails.

The output type determines which output parameters you can set. At present, there are no output

parameters for the "file" output type.

For the "audio" output type, the following parameter is available for any URL format:

volume

Set the volume for this audio stream. The volume must be in the range of 0 to 100.

When using the "audio" output type with a URL that starts with audio:, you can set one of the

following two parameters:

Copyright © 2015, QNX Software Systems Limited 101

Multimedia Renderer API

audio_type

Classify the audio track based on its content (voice, ring tones, video chat, etc.). This

parameter provides a shortcut for setting the audio type, thereby simplifying your client

code. You can use this parameter instead of using the Audio Manager API to obtain an audio

manager handle, and then using that handle to set the audio type.

The audio type is specified as a string that's set to one of the audio types defined by

AUDIO_TYPE_NAMES, which is documented in the Audio Manager Library reference.

audioman_handle

Associate an audio manager handle with the audio stream that the current context manages.

To obtain a value for this parameter, call the audio_manager_get_handle() API function and

pass in the desired audio type.

You can then use this handle to change the audio type and other audio stream characteristics

through the Audio Manager API. For more information, refer to the audio routing functions

described in the Audio Manager Library reference.

For the "video" output type, your application should modify the output window directly by using the

libscreen library, as demonstrated in “Managing video windows (p. 28)”.

CAUTION: The legacy video output parameters video_dest_*, video_src_*, and video_clip_*

have been deprecated. Using libscreen is the proper way to configure video output.

The mmr_output_attach() function sets the parameters url and type . Some plugins allow you to modify

the URL with mmr_output_parameters(). For instance, you can ask mm-renderer to switch output

devices by calling mmr_output_parameters() with a new URL in the parameters.

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Examples:
Suppose you want to set the audio_type parameter to indicate that an output audio stream contains

dialing and call progress tones, also referred to as voice tones. You must look up the audio type string

Copyright © 2015, QNX Software Systems Limited102

Multimedia Renderer API

by passing the AUDIO_TYPES_VOICE_TONES code to the Audio Manager API, store the returned

string in a dictionary, and pass the dictionary to mm-renderer, as follows:

#include <mm/renderer.h>

#include <strm.h>

strm_dict_t* dict = strm_dict_new();

if (dict = strm_dict_set(dict, "audio_type",

audio_manager_get_name_from_type(

AUDIO_TYPE_VOICE_TONES)) == NULL)

{

// Do error handling

}

if (mmr_output_parameters(context,

output_id, dict) < 0)

{

// Call mmr_error_info() and do error handling

}

Presently, the audio type is the only audio stream characteristic that clients can set directly through

mm-renderer. The Audio Manager API lets clients manage additional characteristics of an audio stream.

For example, you could set both the audio type and reset conditions, as follows:

#include <mm/renderer.h>

#include <strm.h>

#include <audio/audio_manager_routing.h>

unsigned int audio_hndl;

if (audio_manager_get_handle(

AUDIO_TYPE_VOICE_TONES, 0,

false, &audio_hndl) != EOK)

{

// Check errno, do error handling, and exit

}

if (audio_manager_set_handle_routing_conditions(

audio_hndl,

SETTINGS_RESET_ON_DEVICE_CONNECTION) != EOK)

{

// Check errno, do error handling, and exit

}

// Store the handle in the dictionary before

Copyright © 2015, QNX Software Systems Limited 103

Multimedia Renderer API

// setting the output parameters

...

You can set the audio_type or audioman_handle parameters for an input in a similar way, by substituting

the call to mmr_output_parameters() with a call to mmr_input_parameters().

Related Links

Defining Parameters (p. 26)

Parameters allow you to set various properties that influence how media files are accessed and rendered

during playback.

Managing video windows (p. 28)

AUDIO_TYPE_NAMES

audio_manager_get_handle()

audio routing functions

strm_dict_t (p. 131)

Dictionary object type

Copyright © 2015, QNX Software Systems Limited104

Multimedia Renderer API

../../../com.qnx.doc.audiomanager.lib_ref/topic/audio_manager_routing.h_defines.html
../../../com.qnx.doc.audiomanager.lib_ref/topic/audio_manager_get_handle.html
../../../com.qnx.doc.audiomanager.lib_ref/topic/manual/audio_manager_routing.h_functions_overview.html

Playback control

After you've attached and configured the input and outputs for a context, you can send it playback

commands to start and stop playback, adjust playback speed, and change the track position.

The mmr_play() and mmr_stop() functions start and stop the flow of media content from the input to

the outputs. You can adjust the playback speed, including setting a speed of 0 to pause playback,

with mmr_speed_set().

You change the playback position with mmr_seek(), for all input types; however, the format of the

string containing the position to seek to varies with the input type. For playlists, you can call

mmr_list_change() during playback to switch to another playlist while continuing to play the current

track.

Copyright © 2015, QNX Software Systems Limited 105

Multimedia Renderer API

mmr_list_change()

Set a new playlist

Synopsis:

#include <mm/renderer.h>

int mmr_list_change(mmr_context_t *ctxt, const char *url, int delta)

Arguments:

ctxt

A context handle.

url

The URL of a new playlist.

delta

The difference between the position of the current track on the two lists.

Library:
mmrndclient

Description:

Set a new playlist without interrupting playback. This function can be used only during playback of a

playlist (including when it's paused, but not stopped). The new playlist must contain the currently

playing track at position n+delta , where n is its position on the old playlist. Note that delta is a signed

value, so it can be negative.

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60).

Common errors returned by this function and recommended follow-up actions are:

MMR_ERROR_INVALID_STATE

The context was stopped, not playing. The playback might have reached the end of the old

playlist and so it was too late to switch playlists without interrupting playback. To fix, attach

the new playlist as an input, seek to the beginning of the appropriate track, and start

playback.

MMR_ERROR_INVALID_PARAMETER

The location in the new list you indicated (n + delta) is out of range or refers to a different

URL. This error could be caused by a stale delta value, which results when the track you

thought was playing just ended and a different track is playing now. To fix, recompute the

difference between the position of the current track on the two lists.

Copyright © 2015, QNX Software Systems Limited106

Multimedia Renderer API

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 107

Multimedia Renderer API

mmr_play()

Start playing

Synopsis:

#include <mm/renderer.h>

int mmr_play(mmr_context_t *ctxt)

Arguments:

ctxt

A context handle.

Library:
mmrndclient

Description:

Start playing. A no-op if already playing.

Once mm-renderer is playing media, you can adjust the play speed, seek to another position, change

playlists, or stop playback.

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited108

Multimedia Renderer API

mmr_seek()

Seek to a position

Synopsis:

#include <mm/renderer.h>

int mmr_seek(mmr_context_t *ctxt, const char *position)

Arguments:

ctxt

A context handle.

position

The position to seek to, in a media-specific format.

Library:
mmrndclient

Description:

Seek to a known position in a single track or a track within a playlist. The required format of the position

string depends on the type of the attached input.

For the "track" type, the position is simply the number of milliseconds from the start of the track

(e.g., "2500"). We refer to this time measurement as the track offset.

For the "playlist" and "autolist" types, the position must be specified as two numbers separated

by a colon (e.g., "2:1200"), where the first number is the track index within the playlist and the

second number is the track offset. For an "autolist" input, the first number must be 1.

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Related Links

Seeking to positions (p. 28)

Copyright © 2015, QNX Software Systems Limited 109

Multimedia Renderer API

mmr_speed_set()

Set the play speed, in units of 1/1000 of normal speed

Synopsis:

#include <mm/renderer.h>

int mmr_speed_set(mmr_context_t *ctxt, int speed)

Arguments:

ctxt

A context handle.

speed

The new speed.

Library:
mmrndclient

Description:

Set the play speed, in units of 1/1000 of normal speed. If the context is playing (including if it's

paused), the new speed is applied immediately; otherwise, it's stored in the context and applied the

next time mmr_play() (p. 108) is called.

Use a speed of zero (0) to pause playback. Depending on the input media, trick play, which entails

playing at speeds other than normal speed (1000), may be unsupported or forbidden, either completely

or only for some portions of the media. Examples of this include:

• A playlist may contain tracks that don't support trick play

• Some devices have only one fast-forward speed

• DVDs forbid pausing or fast-forwarding through menus and some portions of titles

If an mmr_speed_set() call requests a speed for trick play but the exact value is completely unsupported

by the current input, the speed may be rounded to a supported value in the same category (e.g.,

negative, slow, or fast). If the entire category is unsupported, the call fails.

If the call is made during playback and the speed (after the rounding described above) is unsupported

or forbidden at the current position, the speed is changed to an allowed value and the call succeeds.

A similar speed change may occur in the mmr_play() call, based on the curent speed and position, or

during playback if a position is reached (by playing or by an explicit seek request) where the current

play speed is unsupported or forbidden.

The navigation rules for the input media may also specify other circumstances that cause the speed

to change to normal during playback. In particular, you can configure whether the speed reverts to

normal when track boundaries are reached.

Copyright © 2015, QNX Software Systems Limited110

Multimedia Renderer API

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Related Links

Play speed (p. 27)

Playing media (p. 27)

Playing media in mm-renderer requires configuring a context, attaching outputs and an input, and

then issuing playback commands.

Copyright © 2015, QNX Software Systems Limited 111

Multimedia Renderer API

mmr_stop()

Stop playing

Synopsis:

#include <mm/renderer.h>

int mmr_stop(mmr_context_t *ctxt)

Arguments:

ctxt

A context handle.

Library:
mmrndclient

Description:

Stop playing. A no-op if already stopped. Depending on the input media, stopping the playback may

cause the playing position to change or even become indeterminate. Unless you know the behavior of

the media being played, use the function mmr_seek() (p. 109) to seek to a known position before

restarting the playback.

When playback is explicitly stopped using mmr_stop(), mm-renderer doesn't publish an error code.

When the end of media is reached, the error code is set to MMR_ERROR_NONE.

Returns:

Zero on success, -1 on failure (use mmr_error_info() (p. 60)).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited112

Multimedia Renderer API

Chapter 4
Dictionary Object API

A dictionary object is a collection of key-value pairs that maps the names of parameters to their values.

For mm-renderer, you can use the dictionary API to define context, input, and output parameters.

Other components can use the same API to manage parameters specific to their purpose.

Both the keys and values are represented by shareable string objects. A shareable string is a data

structure that encapsulates a string so that it can't be modified directly. This design allows multiple

processes to read the string without the risk that the string will be changed inadvertently between

reads. Modifying a shareable string actually destroys it and creates a new one.

The dictionary object API allows you to create multiple handles to a dictionary object and then use

and even delete these handles in independent program components. After it's created, a dictionary is

immutable until destroyed, so separate components can access it through their handles without worrying

about synchronization.

Different dictionary object handles may be represented by identical pointers, so you shouldn't compare

handles. Regardless of how the handles are represented internally, you must destroy each handle

separately to properly dispose of any resources associated with it.

Related Links

strm_dict_clone() (p. 114)

Duplicate a dictionary handle

strm_dict_new() (p. 124)

Create a new handle for an empty dictionary object

strm_dict_set() (p. 125)

Modify a dictionary entry (using key-value strings)

Copyright © 2015, QNX Software Systems Limited 113

strm_dict_clone()

Duplicate a dictionary handle

Synopsis:

#include <strm.h>

strm_dict_t *strm_dict_clone(const strm_dict_t *dict);

Arguments:

dict

A dictionary object handle.

Library:

libstrm

Description:

The function strm_dict_clone() creates a new handle to the dictionary object referenced by the specified

handle.

Note that multiple handles may be represented by identical pointer values; you should not compare

handles.

Returns:

A new dictionary object handle to the dictionary object referenced by the specified handle.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Related Links

Dictionary Object API (p. 113)

A dictionary object is a collection of key-value pairs that maps the names of parameters to their values.

For mm-renderer, you can use the dictionary API to define context, input, and output parameters.

Other components can use the same API to manage parameters specific to their purpose.

Copyright © 2015, QNX Software Systems Limited114

Dictionary Object API

strm_dict_compare()

Compare two dictionaries

Synopsis:

#include <strm.h>

strm_dict_t *strm_dict_compare(strm_dict_t *newdict,

strm_dict_t const *olddict);

Arguments:

newdict

A handle to the newer version of a dictionary object.

olddict

A handle to the older version of a dictionary object.

Library:

libstrm

Description:

The function strm_dict_compare() compares two dictionaries. It creates a replica of newdict and

removes all those entries that also exist in olddict and have the same value. In other words, if olddict

is the older version of some dictionary and newdict is the newer version, the resulting dictionary

contains the entries that were changed or added, but not the ones that were left alone or deleted. If

the same handle is passed for both arguments, this function returns an empty dictionary object.

Note that the newdict handle is closed and becomes invalid after calling this function, even on a

failure, but the olddict handle is not (unless it's the same handle).

Returns:

A handle to the dictionary object containing the result of the comparison, or a null pointer on failure.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 115

Dictionary Object API

strm_dict_destroy()

Destroy a dictionary object handle

Synopsis:

#include <strm.h>

int strm_dict_destroy(strm_dict_t *dict);

Arguments:

dict

A dictionary object handle.

Library:

libstrm

Description:

The function strm_dict_destroy() destroys the specified dictionary object handle and frees the memory

allocated for the dictionary object if this is the last handle.

Returns:

0

Success.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited116

Dictionary Object API

strm_dict_find_index()

Return the index of a dictionary entry

Synopsis:

#include <strm.h>

ssize_t strm_dict_find_index(const strm_dict_t *dict, const char *key);

Arguments:

dict

A dictionary object handle.

key

The key of an entry to look up.

Library:

libstrm

Description:

The function strm_dict_find_index() returns the index of the entry specified by the key argument, if

found in the specified dictionary.

Returns:

The index of the specified entry on success, or -1 if the entry is not found.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 117

Dictionary Object API

strm_dict_find_rstr()

Find the value of a dictionary entry based on the entry's key (returns a shareable string object handle)

Synopsis:

#include <strm.h>

const strm_string_t *strm_dict_find_rstr(const strm_dict_t *dict,

const char *key);

Arguments:

dict

A handle to a dictionary object.

key

The name of the dictionary entry.

Library:

libstrm

Description:

The function strm_dict_find_rstr() finds the dictionary entry specified by the key argument, returning

a handle to the entry's value. The returned shareable string object handle is owned by the dictionary,

and remains valid until the dictionary handle is destroyed.

Returns:

A handle to the value of the dictionary entry specified by the key parameter if the the entry is found,

or a null pointer if it isn't found.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited118

Dictionary Object API

strm_dict_find_value()

Find the value of a dictionary entry based on the entry's key (returns a string)

Synopsis:

#include <strm.h>

const char *strm_dict_find_value(const strm_dict_t *dict, const char *key);

Arguments:

dict

A dictionary object handle.

key

The key of the dictionary entry.

Library:

libstrm

Description:

The function strm_dict_find_value() returns the value of the dictionary entry specified by the key

argument. The returned string is owned by the dictionary, and remains valid until the dictionary handle

is destroyed.

Returns:

The value (as a string) of the dictionary entry specified by the key parameter if the entry is found, or

a null pointer if it isn't found.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 119

Dictionary Object API

strm_dict_index_delete()

Delete a dictionary entry (by index)

Synopsis:

#include <strm.h>

strm_dict_t *strm_dict_index_delete(strm_dict_t *dict, size_t index);

Arguments:

dict

A dictionary object handle.

index

The index of the entry to delete.

Library:

libstrm

Description:

The function strm_dict_index_delete() creates a new dictionary object that is an exact replica of the

old object, except the entry specified by the index argument is deleted. The function returns a handle

for the new dictionary object, or a null pointer on failure (including when the index is out of range).

On success, the original dictionary handle is destroyed.

Returns:

A handle for the new dictionary object, or a null pointer on failure (including when the index is out of

range).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited120

Dictionary Object API

strm_dict_key_delete()

Delete a dictionary entry (by key)

Synopsis:

#include <strm.h>

strm_dict_t *strm_dict_key_delete(strm_dict_t *dict, char const *key);

Arguments:

dict

A dictionary object handle.

key

The key of the entry to delete.

Library:

libstrm

Description:

The function strm_dict_key_delete() creates a new dictionary object that is an exact replica of the old

object, except the entry specified by the key argument is deleted. The function returns a handle for

the new dictionary object, or a null pointer on failure. On success, the original dictionary handle is

destroyed.

Returns:

A handle for the new dictionary object, or a null pointer on failure.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 121

Dictionary Object API

strm_dict_key_get()

Find the key of a dictionary entry (returns a string)

Synopsis:

#include <strm.h>

const char *strm_dict_key_get(const strm_dict_t *dict, size_t n);

Arguments:

dict

A dictionary object handle.

n

The 0-based index of the entry whose key is returned.

Library:

libstrm

Description:

The function strm_dict_key_get() finds the key of the (n+1)th entry in the specified dictionary and

returns it as a null-terminated string. For example, if n is 3, the key of the fourth entry is returned.

The returned string is owned by the dictionary object, and remains valid until the dictionary handle is

destroyed.

Returns:

The specified key on success, or a null pointer on failure.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited122

Dictionary Object API

strm_dict_key_rstr()

Find the key of a dictionary entry (returns a shareable string object handle)

Synopsis:

#include <strm.h>

const strm_string_t *strm_dict_key_rstr(const strm_dict_t *dict, size_t n);

Arguments:

dict

A handle to a dictionary object.

n

The 0-based index of the entry whose key is returned.

Library:

libstrm

Description:

The function strm_dict_key_rstr() finds the (n+1)th entry in the specified dictionary and returns a

handle to the entry's key. For example, if n is 3, a handle to the the key of the fourth entry is returned.

The returned shareable string object handle is owned by the dictionary, and remains valid until the

dictionary handle is destroyed.

Returns:

A shareable string object handle to the key of the specified entry if it's found, or a null pointer if it

isn't found.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 123

Dictionary Object API

strm_dict_new()

Create a new handle for an empty dictionary object

Synopsis:

#include <strm.h>

strm_dict_t *strm_dict_new(void);

Library:

libstrm

Description:

The function strm_dict_new() creates a new empty dictionary object and returns a new handle to it.

Note that multiple handles may be represented by identical pointer values; you should not compare

handles.

Returns:

A new dictionary object handle.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Related Links

Dictionary Object API (p. 113)

A dictionary object is a collection of key-value pairs that maps the names of parameters to their values.

For mm-renderer, you can use the dictionary API to define context, input, and output parameters.

Other components can use the same API to manage parameters specific to their purpose.

Copyright © 2015, QNX Software Systems Limited124

Dictionary Object API

strm_dict_set()

Modify a dictionary entry (using key-value strings)

Synopsis:

#include <strm.h>

strm_dict_t *strm_dict_set(strm_dict_t *dict,

const char *key,

const char *value);

Arguments:

dict

A dictionary object handle.

key

The key of the dictionary entry to add or modify.

value

The value of the dictionary entry to add or modify.

Library:

libstrm

Description:

The function strm_dict_set() creates a new dictionary object that is an exact replica of the dictionary

object specified by the dict argument, except that the entry specified by the key and value arguments

is added or modified. A handle to the new dictionary object is returned. The original dictionary handle

is destroyed on success.

Returns:

A handle to the new dictionary object on success, or a null pointer on failure.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 125

Dictionary Object API

Related Links

Dictionary Object API (p. 113)

A dictionary object is a collection of key-value pairs that maps the names of parameters to their values.

For mm-renderer, you can use the dictionary API to define context, input, and output parameters.

Other components can use the same API to manage parameters specific to their purpose.

Copyright © 2015, QNX Software Systems Limited126

Dictionary Object API

strm_dict_set_rstr()

Modify a dictionary entry (using key-value shareable string objects)

Synopsis:

#include <strm.h>

strm_dict_t *strm_dict_set_rstr(strm_dict_t *dict,

strm_string_t *key,

strm_string_t *value);

Arguments:

dict

A dictionary object handle.

key

The key of the dictionary entry to add or modify.

value

The value of the dictionary entry to add or modify.

Library:

libstrm

Description:

The function strm_dict_set_rstr() creates a new dictionary object that is an exact replica of the dictionary

object specified by the dict argument, except that the entry specified by the key and value arguments

is added or modified. A handle to the new dictionary object is returned.

The original dictionary handle, and the handles to the key and value arguments are destroyed on

success.

This function is equivalent to strm_dict_set(), except that it may be more efficient if you use clones

of the same key handle repeatedly.

Returns:

A handle to the new dictionary object on success, or a null pointer on failure.

Classification:

QNX Neutrino

Copyright © 2015, QNX Software Systems Limited 127

Dictionary Object API

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited128

Dictionary Object API

strm_dict_size()

Return the number of entries in a dictionary

Synopsis:

#include <strm.h>

size_t strm_dict_size(const strm_dict_t *dict);

Arguments:

dict

A dictionary object handle.

Library:

libstrm

Description:

The function strm_dict_size() returns the number of entries in the specified dictionary.

Returns:

The number of entries in the specified dictionary.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 129

Dictionary Object API

strm_dict_subtract()

Subtract one dictionary from another

Synopsis:

#include <strm.h>

strm_dict_t *strm_dict_subtract(strm_dict_t * left, strm_dict_t const * right);

Arguments:

left

A handle to the first dictionary object.

right

A handle to the second dictionary object.

Library:

libstrm

Description:

The function strm_dict_subtract() creates a replica of the left dictionary object and removes all those

entries that have matching keys in the right object regardless of their value.

Note that the left dictionary object handle is consumed by this function, even on a failure, but the

right is not (unless it's the same handle). If the same handle is passed for both arguments, this function

returns an empty dictionary object, without dismantling the dictionary object referenced by the function

arguments.

Returns:

A new handle to the resulting dictionary object on success, or a null pointer on failure.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited130

Dictionary Object API

strm_dict_t

Dictionary object type

Synopsis:

#include <strm.h>

typedef struct strm_dict strm_dict_t;

Description:

The structure strm_dict_t is a private data type representing a dictionary object.

Dictionaries cannot be modified; they can only be created and destroyed. For example, the function

strm_dict_set() takes a dictionary object handle, destroys it, creates a replica of the dictionary object

and returns a new handle to it. It's equivalent to calling strm_string_destroy() and strm_string_make(),

except that it may reuse the original object's memory.

Different dictionary object handles may be represented by identical pointers. You should not compare

handles. Regardless of how the handles are represented internally, you have to call strm_dict_destroy()

separately for each handle to properly dispose of any resources associated with it.

Use the following functions to manipulate dictionary objects:

• strm_dict_clone()

• strm_dict_compare()

• strm_dict_destroy()

• strm_dict_find_index()

• strm_dict_find_rstr()

• strm_dict_find_value()

• strm_dict_index_delete()

• strm_dict_key_delete()

• strm_dict_key_get()

• strm_dict_key_rstr()

• strm_dict_new()

• strm_dict_set()

• strm_dict_set_rstr()

• strm_dict_size()

• strm_dict_subtract()

• strm_dict_value_get()

• strm_dict_value_rstr()

Class:

QNX Neutrino

Related Links

strm_dict_find_index() (p. 117)

Copyright © 2015, QNX Software Systems Limited 131

Dictionary Object API

Return the index of a dictionary entry

strm_dict_find_rstr() (p. 118)

Find the value of a dictionary entry based on the entry's key (returns a shareable string object handle)

strm_dict_find_value() (p. 119)

Find the value of a dictionary entry based on the entry's key (returns a string)

strm_dict_key_get() (p. 122)

Find the key of a dictionary entry (returns a string)

strm_dict_key_rstr() (p. 123)

Find the key of a dictionary entry (returns a shareable string object handle)

strm_dict_value_get() (p. 133)

Find the value of a dictionary entry based on the entry's index (returns a string)

strm_dict_value_rstr() (p. 134)

Find the value of a dictionary entry based on the entry's index (returns a shareable string object handle)

strm_dict_index_delete() (p. 120)

Delete a dictionary entry (by index)

strm_dict_key_delete() (p. 121)

Delete a dictionary entry (by key)

strm_dict_set() (p. 125)

Modify a dictionary entry (using key-value strings)

strm_dict_set_rstr() (p. 127)

Modify a dictionary entry (using key-value shareable string objects)

Copyright © 2015, QNX Software Systems Limited132

Dictionary Object API

strm_dict_value_get()

Find the value of a dictionary entry based on the entry's index (returns a string)

Synopsis:

#include <strm.h>

const char *strm_dict_value_get(const strm_dict_t *dict, size_t n);

Arguments:

dict

A dictionary object handle.

n

The 0-based index of the entry whose value is returned.

Library:

libstrm

Description:

The function strm_dict_value_get() returns the value of the (n+1)th entry in the dictionary as a

null-terminated string. For example, if n is 3, the value of the fourth entry is returned. The returned

string is owned by the dictionary object, and remains valid until the dictionary handle is destroyed.

Returns:

The specified key on success, or a null pointer on failure.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 133

Dictionary Object API

strm_dict_value_rstr()

Find the value of a dictionary entry based on the entry's index (returns a shareable string object handle)

Synopsis:

#include <strm.h>

const strm_string_t *strm_dict_value_rstr(const strm_dict_t *dict, size_t n);

Arguments:

dict

A handle to a dictionary object.

n

The 0-based index of the entry whose value is returned.

Library:

libstrm

Description:

The function strm_dict_value_rstr() finds the (n+1)th entry in the dictionary, and returns a handle to

shareable string object containing the entry's value. For example, if n is 3, a handle to a shareable

string object containing the value of the fourth entry is returned. The returned string handle is owned

by the dictionary object, and remains valid until the dictionary handle is destroyed.

Returns:

A shareable string object handle to the key of the specified entry if the entry is found, or a null pointer

if it isn't found.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited134

Dictionary Object API

strm_string_alloc()

Allocate a new shareable string object

Synopsis:

#include <strm.h>

char *strm_string_alloc(size_t len, strm_string_t **handle);

Arguments:

len

The length of the string to make room for, not including the terminating '\0' character.

handle

A pointer to a variable where the new string handle will be stored.

Library:

libstrm

Description:

The function strm_string_alloc() allocates a new shareable string object to be filled in by the caller.

The caller must put a null-terminated string in the buffer of the new string object before calling any

of the functions strm_string_clone(), strm_string_modify(), or strm_string_destroy(), and must not

modify the buffer afterwards.

Returns:

A pointer to the first byte of the new string object's string buffer, or a null pointer on error. The new

string handle is stored in the variable pointed to by the function argument handle .

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 135

Dictionary Object API

strm_string_clone()

Create a new handle to an existing shareable string object

Synopsis:

#include <strm.h>

strm_string_t *strm_string_clone(const strm_string_t *sstr);

Arguments:

sstr

A handle to a shareable string object.

Library:

libstrm

Description:

The function strm_string_clone() creates a new string handle to the shareable string object referenced

by the argument sstr .

Returns:

A new handle to the shareable string handle on success, or a null pointer on failure (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited136

Dictionary Object API

strm_string_destroy()

Destroy a string handle

Synopsis:

#include <strm.h>

int strm_string_destroy(strm_string_t *sstr);

Arguments:

sstr

A handle to a shareable string object.

Library:

libstrm

Description:

The function strm_string_destroy() destroys the specified string handle, and frees the memory allocated

for the string object if the specified handle is the last one referencing it.

Returns:

0

Success.

-1

An error occurred (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 137

Dictionary Object API

strm_string_get()

Return a pointer to the first character of the string

Synopsis:

#include <strm.h>

const char *strm_string_get(const strm_string_t *sstr);

Arguments:

sstr

A handle to a shareable string object.

Library:

libstrm

Description:

The function strm_string_get() returns a pointer to the first character of the string in the shareable

string object referenced by the sstr argument. This string should be considered read only; your

application shouldn't attempt to modify it.

Returns:

A pointer to the first character of the string in the shareable string object referenced by the sstr

argument.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited138

Dictionary Object API

strm_string_make()

Create a new shareable string object

Synopsis:

#include <strm.h>

strm_string_t *strm_string_make(const char *cstring);

Arguments:

cstring

A pointer to a null-terminated string.

Library:

libstrm

Description:

The function strm_string_make() creates a new shareable string object, populating it with the string

passed in the cstring argument, and returning a handle to the new string object.

Returns:

A handle to the new string object.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited 139

Dictionary Object API

strm_string_modify()

Modify a shareable string object (destroying the existing handle)

Synopsis:

#include <strm.h>

strm_string_t *strm_string_modify(strm_string_t *sstr, const char *cstring);

Arguments:

sstr

A handle to a shareable string object.

cstring

A pointer to a null-terminated string.

Library:

libstrm

Description:

The function strm_string_modify() creates a new shareable string object from the string passed in the

cstring argument, and returns a new handle to the new string object. Calling strm_string_modify() is

equivalent to calling strm_string_destroy() and strm_string_make(), except that it may reuse the original

object's memory. The shareable string object handle passed in the sstr argument is consumed, even

on failure.

Returns:

A new handle to the new shareable string object on success, or a null pointer on failure (errno is set).

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

Copyright © 2015, QNX Software Systems Limited140

Dictionary Object API

strm_string_t

Shareable string type

Synopsis:

#include <strm.h>

typedef struct strm_string strm_string_t;

Description:

The structure strm_string_t is a private data type representing a shareable string.

Shareable strings cannot be modified; they can only be created and destroyed. For example, the function

strm_string_modify() takes a shareable string object handle, destroys the object, creates a new shareable

string object and returns a new handle to it. It is equivalent to calling strm_string_destroy() and

strm_string_make(), except that it may reuse the original object's memory.

Different shareable string object handles may be represented by identical pointers. You should not

compare handles. Regardless of how the handles are represented internally, you have to call

strm_string_destroy() separately for each handle to properly dispose of any resources associated with

it.

Use the following functions to manipulate shareable strings:

• strm_string_alloc()

• strm_string_clone()

• strm_string_destroy()

• strm_string_get()

• strm_string_make()

• strm_string_modify()

Class:

QNX Neutrino

Copyright © 2015, QNX Software Systems Limited 141

Dictionary Object API

Index

C

connecting to mm-renderer 19

contexts 14–17, 24, 35

closing handles 24

creating and destroying 24

description 14

input 16

orphan contexts 24

output 15

plugins 17

primary handle 24

secondary handles 24

state information 35

D

dictionaries 114–125, 127, 129–130, 133–134

cloning 114

comparing 115

creating 124

deleting entries 120–121

destroying 116

determining size of 129

finding entries 117

finding keys 122–123

finding values 118–119, 133–134

modifying entries 125, 127

subtracting 130

Dictionary Object API 113, 131, 141

dictionary object type 131

introduction 113

shareable string type 141

disconnecting from mm-renderer 19

M

mm-renderer 11–14, 19–20, 22–24, 26–28, 33, 35–

36, 39–40, 42, 44, 54–56, 61, 63, 70, 78,

82–83, 95, 105

API 39–40, 42, 44, 54–56, 61, 63, 70, 78, 82–83,

95, 105

checking for errors 55

configuring inputs 83

configuring outputs 95

connecting and disconnecting 40

mm-renderer (continued)

API (continued)

connection handle type 42

context handle type 54

context states 82

controlling playback 105

error codes 56

error information structure 61

event information structure 70

event types 78

events 63

header file locations 39

introduction 39

managing contexts 44

architecture 13

capabilities 11

command line 22–23

description 23

options 22

syntax 22

configuration file 20

connecting to 19

contexts, See contexts

detecting changes in play state 36

detecting warnings and errors 36

disconnecting from 19

managing video windows 28

operations for connected clients 19

parameters, See parameters

play speed 27

playing media 27

PPS objects, See PPS objects

recording audio data 33

rendering video 28

seeking to positions 28

starting 20

supported media categories 12

working with contexts 24

multimedia renderer, See mm-renderer

P

parameters 26

defining 26

Copyright © 2015, QNX Software Systems Limited 143

Index

playback 27–28, 36

how to play media 27

play state, warnings, and errors 36

play states 27

seeking 28

setting speed of 27

playlists 12

definition 12

supported types 12

playlists and playlist windows 37

PPS objects 35–38

context state 35

input metadata 37

play state, warnings, and errors 36

playlist windows 37

summary 35

supported file and MIME types 38

PPS service 11

S

Screen 28

using to manipulate video output 28

shareable strings 135–140

allocating 135

cloning 136

create from strings 139

destroying 137

getting string pointers 138

modifying 140

starting mm-renderer 20

supported file and MIME types 38

T

Technical support 10

tracks 12

definition 12

supported sources 12

trick play 110

Typographical conventions 8

Copyright © 2015, QNX Software Systems Limited144

Index

	Contents
	About This Guide
	Typographical conventions
	Technical support

	Multimedia Renderer: Capabilities and Architecture
	Supported media categories
	Abstraction layers
	Contexts
	Outputs
	Inputs
	Plugins

	Using the Multimedia Renderer
	Starting the multimedia renderer
	Configuration file for mm-renderer
	Command line for mm-renderer

	Working with contexts
	Closing context handles

	Defining Parameters
	Playing media
	Play states
	Play speed
	Seeking to positions
	Managing video windows

	Recording audio data
	PPS objects
	Context state
	Play state, warnings, and errors
	Input metadata
	Playlist window
	Supported file and MIME types

	Multimedia Renderer API
	Connection management
	mmr_connect()
	mmr_connection_t
	mmr_disconnect()

	Context management
	mmr_command_send()
	mmr_context_close()
	mmr_context_create()
	mmr_context_destroy()
	mmr_context_open()
	mmr_context_parameters()
	mmr_context_t

	Error information
	mm_error_code_t
	mmr_error_info()
	mmr_error_info_t

	Events
	mmr_event_arm()
	mmr_event_data_set()
	mmr_event_get()
	mmr_event_t
	mmr_event::data
	mmr_event::details

	mmr_event_type_t
	mmr_event_wait()
	mmr_state_t

	Input configuration
	mmr_input_attach()
	mmr_input_detach()
	mmr_input_parameters()
	mmr_track_parameters()

	Output configuration
	mmr_output_attach()
	mmr_output_detach()
	mmr_output_parameters()

	Playback control
	mmr_list_change()
	mmr_play()
	mmr_seek()
	mmr_speed_set()
	mmr_stop()

	Dictionary Object API
	strm_dict_clone()
	strm_dict_compare()
	strm_dict_destroy()
	strm_dict_find_index()
	strm_dict_find_rstr()
	strm_dict_find_value()
	strm_dict_index_delete()
	strm_dict_key_delete()
	strm_dict_key_get()
	strm_dict_key_rstr()
	strm_dict_new()
	strm_dict_set()
	strm_dict_set_rstr()
	strm_dict_size()
	strm_dict_subtract()
	strm_dict_t
	strm_dict_value_get()
	strm_dict_value_rstr()
	strm_string_alloc()
	strm_string_clone()
	strm_string_destroy()
	strm_string_get()
	strm_string_make()
	strm_string_modify()
	strm_string_t

	Index

