
Multimedia Synchronizer
Developer's Guide

QNX® SDK for Apps and Media 1.1

©2012–2015, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: March 20, 2015

Contents
About This Guide..5

Typographical conventions..6

Technical support...8

Chapter 1: Multimedia Synchronization Overview...9
The synchronization process..10

Synchronizer selection...10

Synchronization passes..11

Mediastore filesystem traversal...13

Database cleanup..14

Optimization of synchronization for slow devices..15

Full, directed, and file synchronizations...17

Chapter 2: Setting up the Multimedia Synchronizer Environment...19
mm-sync command line..21

mmsyncclient command utility..23

Chapter 3: Working with Synchronizations...31
Synchronizing media content from applications...32

Maintaining database persistence...34

Tracking synchronization progress..36

Setting a priority folder...38

Repairing database inconsistencies..40

Chapter 4: Configuring Mediastore Synchronization..41
Configuration file contents..42

The <Configuration> element...42

The <Configuration>/<Database> element...42

The <Configuration>/<Database>/<Synchronization> element..43

The <Configuration>/<Database>/<Synchronization>/<ConfigurableMetadata> element.......47

The <Configuration>/<Database>/<Synchronization>/<MSS> element................................49

The <Configuration>/<Database>/<Synchronization>/<PLSS> element...............................49

The <Configuration>/<Database>/<Prune> element..50

Setting synchronization thread priorities...52

Skipping files based on their names...53

Filtering synchronization by file type..55

Prescanning for nonmedia items..57

Limiting the number of items read...59

Maintaining constant IDs for updated files and playlists...61

Chapter 5: Multimedia Synchronizer API...63
Client interface..64

Multimedia Synchronizer Developer's Guide

Client interface constants..65

mm_sync_cancel() ...67

mm_sync_connect()..68

mm_sync_control()..69

mm_sync_debug_get()...71

mm_sync_debug_set()...72

mm_sync_disconnect()..73

mm_sync_resume()...74

mm_sync_start()...75

mm_sync_status_get()...78

mm_sync_status_get_bydbname()...80

mm_sync_status_get_byid()...81

mm_sync_status_get_dbname()..82

mm_sync_suspend()..84

mmsync_hdl_t..85

mmsync_status_t..86

Configuration settings...88

Configuration constants...89

Media file categories..93

mm_ftypes_t...94

Event interface..95

mm_sync_events_get()...96

mm_sync_events_register()..97

mmsync_event_queue_size_t..98

mmsync_event_t...99

mmsync_event_type_t..100

mmsync_first_fid_data_t..108

mmsync_folder_sync_data_t...109

mmsync_ms_update_data_t...111

mmsync_pl_entries_sync_data_t...113

mmsync_reset_sync_data_t..114

mmsync_sync_data_t...115

Error information..116

mmsync_sync_error_t..117

mmsync_sync_error_type_t...118

Index...123

Contents

About This Guide

The Multimedia Synchronizer Developer's Guide is intended for developers who want to write multimedia

applications that use the mm-sync service to synchronize a device's media information with a database.

This table may help you find what you need in this guide:

Go to:To find out about:

The synchronization process (p. 10)The multistep process used for synchronizing

mediastores

Setting up the Multimedia Synchronizer

Environment (p. 19)

Running the mm-sync service

mmsyncclient command utility (p. 23)The command-line utility for managing synchronizations

Synchronizing media content from

applications (p. 32)

The application steps needed to synchronize a

mediastore's metadata to a dynamically loaded database

Working with Synchronizations (p. 31)Controlling and troubleshooting synchronizations

Configuring Mediastore

Synchronization (p. 41)

Defining what content gets synchronized and how media

information gets stored in databases

Multimedia Synchronizer API (p. 63)The API data structures and functions to use for

managing synchronizations and for interpreting mm-sync
errors

Copyright © 2015, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have unwanted or

undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your

files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited6

About This Guide

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited 7

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

Copyright © 2015, QNX Software Systems Limited8

About This Guide

http://www.qnx.com

Chapter 1
Multimedia Synchronization Overview

The multimedia synchronizer service, mm-sync, synchronizes mediastore information with the contents

of persistent storage. Synchronization involves extracting file and media metadata from devices and

uploading that information into QDB databases.

Each mediastore has its own database that contains metadata such as the media types of its individual

files, track names, image dimensions, and so on. Using databases for storage offers applications an

efficient way of obtaining media metadata because they can simply query databases instead of searching

the filesystems of external devices and then retrieving file information through system calls.

Another advantage to this design is that applications can view media information about any device

that has been synchronized, even if that device is no longer present on the system.

The mm-sync service can:

• index files

• index metadata

• resolve playlists

• process or index external databases

Client applications can use mm-sync to synchronize some or all mediastore content at any time through

API calls. The extracted media information helps these applications to find, organize, and play media,

as well as provide end users with helpful and up-to-date information.

The mm-sync service selects the best synchronizer for a given mediastore to ensure users have the

most accurate and complete metadata. The synchronization proceeds in steps and uses the QDB

database server to transfer the uploaded information into persistent storage.

Artwork extraction

Although the media content that mm-sync synchronizes to databases may include artwork images, the

synchronizer service does not extract artwork. To do this, your client must use libmd to retrieve the

artwork from the media files, based on the list available in the mediastore database previously

synchronized by mm-sync. Information on libmd artwork extraction is found in the “Extracting artwork”

section of the Metadata Provider Library Reference.

Mediastore detection

Mediastore insertions or removals are not detected by mm-sync. Applications can make system calls

(e.g., readdir()) to search for attached mediastores that are mounted in the local filesystem, and then

manually synchronize their contents with mm-sync.

Changes in device filesystems, such as file additions or removals, are also not detected by mm-sync.
Applications must explicitly synchronize mediastore content to guarantee up-to-date file information

for their users. An advantage of this approach is that mm-sync won't do a synchronization for every

mediastore insertion or change of content, which would consume many system resources and likely

slow down client applications.

Copyright © 2015, QNX Software Systems Limited 9

The synchronization process

The multimedia synchronization is done in multiple passes, so that the application may begin playing

media without having to wait for all the metadata to be synchronized. You can perform various types

of synchronizations that update some or all of the media information, depending on your application

needs.

Before the synchronization begins, mm-sync first selects the best synchronizer for the requested

operation. The service then traverses the files and folders on the mediastore in multiple passes to

extract and upload the file information and media metadata. The number of passes made depends on

the synchronization parameters. Each pass reads different media information and populates the

appropriate database tables.

Your client application can do other work while the synchronization completes. The mm-sync API

functions are nonblocking so the same thread that starts a synchronization can go on to perform other

tasks, including playing media once the file information has been uploaded. Also, if the synchronizer

service doesn't have the resources to start a synchronization, it places the request in its "pending"

queue and signals the client, which can monitor the synchronization progress through event notifications.

Synchronizer selection

The mm-sync service provides many synchronizers designed for various media and storage devices.

Some synchronizers can extract the metadata from a certain device, media type, or playlist better than

other synchronizers. When mm-sync receives a synchronization request, it selects the best synchronizer

to use for the content being synchronized and for the device and media type.

For example, for a CDDA:

1. The mm-sync service checks if the CD device supports CD-Text and if the Gracenote plugin is

enabled.

2. If CD-Text or Gracenote support is available, mm-sync uses the synchronizer most appropriate for

extracting the metadata of the CD files.

3. If no such synchronizer is available, mm-sync uses its default synchronizer to get the metadata.

Once mm-sync has selected the synchronizer, the service begins updating media information in the

database in a multipass process.

Synchronizer ratings

Synchronizers rate themselves based on their ability to handle different types of mediastores, files,

and playlists. When it receives a request for a synchronization, mm-sync queries synchronizers for their

ratings and compares them to identify the best synchronizer for the task.

Internally, ratings are expressed as integer values of 0 or greater. A value of 0 means the synchronizer

doesn't support the device. A value of 1 means it supports the device but is the worst choice, while

higher values mean the synchronizer is a better choice. There's no official highest rating, but typically

values are between 0 and 100.

The rating values used by synchronizers are similar to those used by metadata plugins, which are

libraries that define their own synchronizers that retrieve metadata, sometimes from third-party sources

Copyright © 2015, QNX Software Systems Limited10

Multimedia Synchronization Overview

such as MusicBrainz. You can override the default ratings of metadata plugin synchronizers in the

configuration file, but you can't override the ratings of the built-in mm-sync synchronizers.

Manual selection of a synchronizer

You can instruct mm-sync to use a specific synchronizer to bypass the automated selection based on

ratings.

To request to use a synchronizer from a client application, set the use_synchronizer or

force_synchronizer option in the mm_sync_start() API call or sync_start command.

The built-in supported synchronizers are:

• audiocd

• bfsrecurse

• custom

• dbm

• devb

• dvdaudio

• dvdvideo

• internet

• mediafs

• mediafs2wire

• vcd

Related Links

Synchronization passes (p. 11)

The mm-sync service synchronizes media information in three passes known as the files, metadata,

and playlist passes. The default behavior is to perform all three passes but you can perform any subset

of these passes by setting the right flags when requesting a synchronization.

mmsyncclient command utility (p. 23)

Manage mediastore synchronizations

mm_sync_start() (p. 75)

Start a synchronization

Synchronization passes

The mm-sync service synchronizes media information in three passes known as the files, metadata,

and playlist passes. The default behavior is to perform all three passes but you can perform any subset

of these passes by setting the right flags when requesting a synchronization.

Each pass uploads different information into the database. For the metadata pass, the tables updated

depend on the media types of the files being synchronized. The following table shows the database

tables updated during the three synchronization passes, based on the default database schema:

Tables updatedMedia typePass

files, folders, playlists, mediastore_metadataAllFiles

audio_metadata, genres, artists, albums, mediastore_metadataAudioMetadata

Copyright © 2015, QNX Software Systems Limited 11

Multimedia Synchronization Overview

Tables updatedMedia typePass

video_metadata, genres, artists, mediastore_metadataVideo

photo_metadata, mediastore_metadataPhoto

files, folders, playlists, playlist_entries, mediastore_metadataAllPlaylist

Files pass

The files pass retrieves basic file information and then updates the files, folders, and playlists table

entries for all media files and playlists found on the device. In this pass, mm-sync removes from the

database any files, folders, or playlists that used to exist but are no longer on the device. For deleted

playlists, mm-sync also removes their playlist entries.

No metadata has been gathered at this point, but the file information obtained lets you begin playing

media.

At the end of each pass, mm-sync updates the syncflags and last_sync fields in the

mediastore_metadata table to mark synchronization progress.

Metadata pass

The metadata pass retrieves metadata associated with the files on the device. Metadata can include

running time, display details, author, and other creation and playback information. The table entries

that get updated depend on the media types (audio, video, or photo) of the mediastore files whose

metadata is synchronized.

In the database schema definition file, you can change the tables that hold the metadata for different

file types. The default configuration splits metadata for audio, video, and photo files into different

tables, but you could define more or fewer tables to store the metadata, depending on the file types

and media information you want to support. The files table is always present, but you can add fields

to store more information in this table.

After the metadata pass, metadata is accurate for the mediastore files being synchronized, and you

can display this information to the user.

Playlist pass

The playlist pass converts playlist entries into ordered lists of file IDs, which are stored in the

playlist_entries table.

In this pass, mm-sync tries to match the filename in each playlist entry with a filename in the database.

For playlists on devices with media-based filesystems, mm-sync searches for up to 100 database

matches of a playlist filename (any matches beyond 100 matches are ignored), and then associates

the playlist entry with the database file that is the best match.

For new playlists, you must synchronize the playlist file by running the files pass with the

appropriate synchronization path before running the playlist pass. This is because the new

playlist must have an entry in the playlists table for the playlist pass to be able to resolve the

file IDs of the playlist's entries.

Copyright © 2015, QNX Software Systems Limited12

Multimedia Synchronization Overview

If a playlist entry refers to a file no longer on the device, mm-sync doesn't delete the entry but instead

sets its file ID (fid) to 0. To delete playlist entries that refer to nonexistent files, you must remove the

names of those files from the playlists on the device and then run the playlist pass again.

When this pass has completed, you can display and use playlists.

Related Links

Synchronizer selection (p. 10)

The mm-sync service provides many synchronizers designed for various media and storage devices.

Some synchronizers can extract the metadata from a certain device, media type, or playlist better than

other synchronizers. When mm-sync receives a synchronization request, it selects the best synchronizer

to use for the content being synchronized and for the device and media type.

Mediastore filesystem traversal (p. 13)

At each synchronization pass, mm-sync traverses the mediastore filesystem to extract and upload media

information into the mediastore's database. The section of the filesystem tree that is synchronized

depends on the user-specified path. If a blank path is given and the recursive option is set, the entire

filesystem is synchronized. Otherwise, only the files and folders named by the path are synchronized.

Database cleanup (p. 14)

During synchronization, mm-sync may clean up the database to remove references to files no longer

on the mediastore and unused references to the metadata of these files. The cleanup ensures the

accuracy of the content and responsiveness of the database by eliminating unneeded, stale data.

Optimization of synchronization for slow devices (p. 15)

Some devices can store large volumes of information that isn't all media content or that may be

inherently slow to read. To avoid an unacceptably long delay between when the device is inserted and

when media playback can begin, mm-sync optimizes the synchronization of slow devices through its

foreground merge feature.

Full, directed, and file synchronizations (p. 17)

The multimedia synchronizer doesn't provide separate controls for synchronizing an entire mediastore

versus certain folders or files. You use the same function call to synchronize content whether it's a

full, recursive synchronization of all the mediastore content or of only a folder, file, or playlist.

Mediastore filesystem traversal

At each synchronization pass, mm-sync traverses the mediastore filesystem to extract and upload media

information into the mediastore's database. The section of the filesystem tree that is synchronized

depends on the user-specified path. If a blank path is given and the recursive option is set, the entire

filesystem is synchronized. Otherwise, only the files and folders named by the path are synchronized.

The filesystem traversal is done with a breadth-first walk of the mediastore's directory structure, as

follows:

1. Start at the root node of the section of the filesystem tree being synchronized. When a blank path

is given, the root is the mediastore's root folder. Synchronize this root object before synchronizing

any others.

2. Root objects that are folders can contain other objects, which may be files or subfolders. Synchronize

any objects in the root before examining the contents of any of those objects.

3. If the recursive option is set, for every contained object that is a folder, traverse its directory structure

to synchronize its contents before starting on the next folder.

Copyright © 2015, QNX Software Systems Limited 13

Multimedia Synchronization Overview

The following image shows the synchronization order for typical contents of a mediastore filesystem:

1

4 10

3 9

6 8

5 7

2

You can enable or disable the recursive option (MMSYNC_OPTION_RECURSIVE) in the call to

mm_sync_start() or in the sync_start command. By default, this option is disabled, so you must

enable it when you want to synchronize the entire mediastore or a whole directory subtree.

This traversal policy ensures that all folders with the same parent node are synchronized before folders

deeper in the tree are examined. So mm-sync will display information on the contents in the root folder

before it retrieves information on files in subfolders. This progressive information retrieval makes sense

because end users often start at the filesystem root when they first access mediastores, and then

descend into subfolders as they explore the media content.

If you cancel a synchronization in progress, some folders may be fully synchronized while

others may not have any of their contents synchronized.

The synchronization path provided by the client to mm-sync determines the synchronization startpoint

(the root node in the walk). The path is relative to the mediastore filesystem. For example, the path

The_Doors tells mm-sync to locate the object named The_Doors within the root folder. If the name

refers to a file, only that file gets synchronized. If the name refers to a folder, the files it contains get

synchronized; when the recursive option has been set, the subfolders also get synchronized.

Database cleanup

During synchronization, mm-sync may clean up the database to remove references to files no longer

on the mediastore and unused references to the metadata of these files. The cleanup ensures the

accuracy of the content and responsiveness of the database by eliminating unneeded, stale data.

The multimedia synchronizer may attempt to clean up unused data if the database is “prunable” and

the current synchronization is not the first synchronization of the mediastore.

A database is prunable if its configuration allows for unused data to be deleted. Pruning is the name

of the technique used during database cleanup to incrementally remove unneeded database entries.

Copyright © 2015, QNX Software Systems Limited14

Multimedia Synchronization Overview

The files pass (the first synchronization pass) identifies the media currently stored on the device. As

part of this activity, mm-sync deletes from the files, folders, playlist, and playlist_entries tables all

entries for content not found on the mediastore. Any metadata for this nonexistent content is deleted

from the audio_metadata, video_metadata, and photo_metadata tables or from any metadata tables

defined in a custom configuration. The database then remains a manageable size and its content

reflects what is stored on the media.

The playlist pass (the third synchronization pass) resolves the playlist information. During this pass,

mm-sync deletes from the playlist and playlist_entries tables all entries for playlist content no longer

on the mediastore.

The cleanup continues as mm-sync then prunes the audio_metadata, video_metadata, photo_metadata,
genres, artists, and albums tables to delete the metadata for files removed from the media.

The cleanup can take up to several seconds, depending on the size of the database for the device being

synchronized. Clients monitoring the synchronization might therefore see a delay between the receipt

of the event signaling the completion of the playlist pass (the third pass) and the event signaling the

completion of the entire synchronization operation. Furthermore, the QDB database service, which

manages the databases mm-sync uses, can consume a large portion of CPU resources throughout the

operation.

Related Links

Synchronization passes (p. 11)

The mm-sync service synchronizes media information in three passes known as the files, metadata,

and playlist passes. The default behavior is to perform all three passes but you can perform any subset

of these passes by setting the right flags when requesting a synchronization.

Optimization of synchronization for slow devices (p. 15)

Some devices can store large volumes of information that isn't all media content or that may be

inherently slow to read. To avoid an unacceptably long delay between when the device is inserted and

when media playback can begin, mm-sync optimizes the synchronization of slow devices through its

foreground merge feature.

Optimization of synchronization for slow devices

Some devices can store large volumes of information that isn't all media content or that may be

inherently slow to read. To avoid an unacceptably long delay between when the device is inserted and

when media playback can begin, mm-sync optimizes the synchronization of slow devices through its

foreground merge feature.

The overhead of database transactions makes it valuable to insert information for many files (say, 100)

in one database operation. If the media file information on the device is slow to read, extracting

information for the number of files necessary for a full transaction can take up to several seconds,

easily exceeding the client application's limit on playback response times. To allow faster playback,

mm-sync uploads information on the first media file found, which gets marked as the first fid file (first

playable file), in a dedicated database transaction. This operation is known as a foreground

synchronization merge.

The merge makes the first media file playable sooner and allows the remaining file and metadata

information to be synchronized later in the background, while the first media file is played. When

developing your client application, you can choose either to begin playback when the first fid is

synchronized to the database or to wait until the files pass of synchronization completes so you have

Copyright © 2015, QNX Software Systems Limited 15

Multimedia Synchronization Overview

the entire list of tracks. The second strategy may be necessary if you have to play tracks in a certain

order (say, alphabetically) that requires that all files are synchronized before playback can start.

You can set the priority of the synchronization merge with the <MergePriorityAdjust> element in the

configuration file.

Related Links

Synchronization passes (p. 11)

The mm-sync service synchronizes media information in three passes known as the files, metadata,

and playlist passes. The default behavior is to perform all three passes but you can perform any subset

of these passes by setting the right flags when requesting a synchronization.

Database cleanup (p. 14)

During synchronization, mm-sync may clean up the database to remove references to files no longer

on the mediastore and unused references to the metadata of these files. The cleanup ensures the

accuracy of the content and responsiveness of the database by eliminating unneeded, stale data.

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

Copyright © 2015, QNX Software Systems Limited16

Multimedia Synchronization Overview

Full, directed, and file synchronizations

The multimedia synchronizer doesn't provide separate controls for synchronizing an entire mediastore

versus certain folders or files. You use the same function call to synchronize content whether it's a

full, recursive synchronization of all the mediastore content or of only a folder, file, or playlist.

The sync_start command for the mmsyncclient utility and the mm_sync_start() API function both

take an argument for specifying the synchronization path. When the path lists a specific file or folder

instead of the root folder (/), we refer to that synchronization as a directed synchronization.

The following table shows the path argument syntax and the additional options needed to perform

synchronizations of varying scope:

Additional optionsPath syntaxScope

MMSYNC_OPTION_RECURSIVE

(required)

"/"Entire mediastore

MMSYNC_OPTION_RECURSIVE

(optional; use to synchronize

contents of all subfolders)

"/$folderpath/" (you can find a folder's path by looking

up its folderid in the folders table, and then reading the

basepath field from the result row)

Existing folder

MMSYNC_OPTION_PASS_FILES

(required),

"/$filepath" (you can find an existing file's path by

looking up its fid in the files table, reading the result row's

Existing file

MMSYNC_OPTION_PASS_METADATA

(required)
folderid field, and then looking up the folder's path, as

when synchronizing a folder)

MMSYNC_OPTION_PASS_FILES

(required),

"/$folderpath/" (you can find the path of the folder

containing the new media files, playlists, and possibly

New files (including

playlists and

subfolders) MMSYNC_OPTION_PASS_METADATA

(required),
subfolders by looking up the folder's folderid value, as when

synchronizing a folder)
MMSYNC_OPTION_RECURSIVE

(optional; use to synchronize

contents of all subfolders)

MMSYNC_OPTION_PASS_PLAYLISTS

(required)

"/$playlistpath" (you can find a playlist's path by

joining the playlists and folders tables on the folderid field,

then reading the basepath field from the join result)

Entries for an existing

playlist

Mediastores with a single directory level, such as music CDs, don't support synchronizations

directed at folders or files. For these mediastore types, synchronizations must be done for the

entire device by setting the path to "/". Only mediastores with hierarchical directory structures,

such as HDDs, iPods, USB sticks, and data CDs, support directed synchronizations. For some

of these latter mediastore types, the performance may not be as good when synchronizing the

entire mediastore as opposed to targeted folders or files.

Copyright © 2015, QNX Software Systems Limited 17

Multimedia Synchronization Overview

When to use directed synchronizations

Directed synchronizations are useful when you need information on certain folders or files but you

don't want to do an expensive synchronization of all the mediastore content. By directing the

synchronization at the folders and files within a path on the mediastore, you can synchronize some

media information to make it available sooner to users. You can then synchronize the rest of the

information later, if needed.

When a directed synchronization notices a folder that's in the mm-sync database but is not on the

mediastore, the synchronization deletes the folder and its contents from the database. With this

behavior, a client application can remove a folder from a mediastore and then use directed

synchronization to remove this folder from the database.

Synchronization of individual files is typically done when an application knows that a specific file

change has occurred: a file has been deleted, added, moved, or renamed. Running the files and

metadata synchronization passes on that file will update its information in the database.

Cancelling a synchronization in progress

To improve the end user's ability to browse a mediastore, such as an iPod, the mm-sync service offers

the MMSYNC_OPTION_CANCEL_CURRENT flag. If mm-sync is performing a synchronization but your

client application needs to respond to a user action, such as navigating to another folder in the

mediastore file explorer, your application can set this flag when calling mm_sync_start() to cancel the

current synchronization and start a new synchronization. The cancellation feature helps reduce resource

consumption by allowing you to stop synchronizations that become unnecessary when the application

goals change.

Related Links

The synchronization process (p. 10)

The multimedia synchronization is done in multiple passes, so that the application may begin playing

media without having to wait for all the metadata to be synchronized. You can perform various types

of synchronizations that update some or all of the media information, depending on your application

needs.

mmsyncclient command utility (p. 23)

Manage mediastore synchronizations

mm_sync_start() (p. 75)

Start a synchronization

Copyright © 2015, QNX Software Systems Limited18

Multimedia Synchronization Overview

Chapter 2
Setting up the Multimedia Synchronizer Environment

Multimedia synchronization is done by the mm-sync utility. Before using mm-sync, you must first start

both the Persistent Publish/Subscribe (PPS) service and the QNX database (QDB) server, and then

load the databases of the mediastores you plan to synchronize. You can then launch mm-sync and

start synchronizing media content.

To set up mm-sync:

1. In a QNX Neutrino terminal, enter io-fs-media to start the IO service for reading and writing to

RAM-based locations.

Although it's not required, we recommend running your QDB databases in RAM; for example, from

a tmpfs filesystem. You can also run databases from locations in QNX filesystems and flash

filesystems but performance may suffer with these two filesystem types due to the inherent slowness

in writing to the storage media.

2. Enter pps to start PPS as a background process.

PPS creates a root directory (/pps by default) to store the PPS configuration objects, which are text

files that describe the configuration of the QDB databases.

3. Enter mkdir -p /pps/qnx/qdb to create the directory structure used in the PPS configuration

path.

4. Enter qdb followed by any desired options to start the QDB server.

For debugging purposes, you should start qdb with -vvvvvvvV options to get verbose output. The

-v option is cumulative, with each additional v adding a level of verbosity, up to seven levels. The

-V option sends output to the console and to the sloginfo log file.

5. Load the databases that hold the file information and metadata for any mediastores you plan to

use. For each database you want to load, you must:

• Copy an existing configuration object or, from a client application using the open() and write()

system calls, output the list of configuration attributes and values into the config subdirectory

under the PPS configuration path (/pps/qnx/qdb/).

QDB parses the configuration object's contents and tries to load the database with the same

name as the object. QDB then creates a status object that indicates the database state after

the loading attempt. If the storage file named in the configuration object doesn't exist, QDB

creates the storage file and if directed, populates the database with initial data.

The directory that will contain the new storage file must exist before you start loading

the database. Otherwise, the loading fails and QDB sets the status to Error.

See the QNX QDB Developer's Guide for details on database configuration files.

The mm-sync service can now access any of the loaded databases to perform synchronizations on

the associated mediastores.

Copyright © 2015, QNX Software Systems Limited 19

6. Start the multimedia synchronization engine by entering into a terminal a command in the form:

mm-sync -c /patches/640-0315/target/qnx6/etc/mm/mm-sync.conf -vvvv

[remaining options].

You can point mm-sync to a configuration file by using the -c option. Although the mm-sync
package includes a default configuration file, it's often beneficial (or even necessary) to use a

custom configuration based on your system requirements.

The multimedia synchronizer service is running. You can now manage synchronizations by issuing

commands to the mmsyncclient utility or by launching media applications that detect the insertion of

new devices and call the appropriate mm-sync API functions.

Copyright © 2015, QNX Software Systems Limited20

Setting up the Multimedia Synchronizer Environment

mm-sync command line

Start multimedia synchronization engine

Synopsis:

mm-sync [-c config_file] [-D] [-F] [-m context_path]

[-o option[,option2...]] [-s] [-S] [-v[v...]] [-V]

Options:

-c config_file

Specify an overridden configuration file. The full path of the default configuration file that

mm-sync looks for is /etc/mm/mm-sync.conf, but you can provide a path to any other valid

configuration file.

-D

Turn on the debugging output.

-F

Keep the synchronizer process in the foreground. This consumes more CPU resources but

is handy when you need to minimize the time for making the media content playable.

-m context_path

Specify an overridden control context path. This is the path of the device object used in

synchronizations. This option allows you to run multiple mm-sync instances concurrently

with the same configuration.

When this option isn't used, mm-sync uses the context path provided in the configuration

file. If no such path is given in the configuration file or if no configuration file is provided,

mm-sync uses the system default of /dev/mmsync.

-o option

Configure miscellaneous options. Currently, only one option is supported:

sync_verbosity=<0..7>

Set the verbosity level when logging synchronization details. If this option isn't

specified, the default behavior is to match the -v setting.

-S

Enable logging of synchronization statistics. If you omit this option, the default behavior is

to not log these statistics.

-s

Print logs to stderr in addition to sloginfo.

Copyright © 2015, QNX Software Systems Limited 21

Setting up the Multimedia Synchronizer Environment

-V

Print expected schema versions to stderr and then quit.

-v

Increase output verbosity. Messages are written to sloginfo.

The -v option is handy when you're trying to understand the operation of mm-sync, but

when lots of -v arguments are used, the logging becomes quite significant and can change

timing noticeably. The verbosity setting is good for systems under development but should

probably not be used in production systems or when performance testing.

Description:

The mm-sync command line runs the multimedia synchronizer engine with various user-specified

parameters. Through parameters, you can specify a control context path and configuration file to use,

make the service run in the foreground, and configure many aspects of logging, including the verbosity

level and the logging of statistics.

The mm-sync service runs as a server process and responds to synchronization commands issued from

the mmsyncclient utility or API calls made from client applications.

Related Links

mmsyncclient command utility (p. 23)

Manage mediastore synchronizations

Synchronizing media content from applications (p. 32)

Media applications can manually detect mediastore attachments and start synchronizations. To do

this, applications must read a PPS object to learn the mediastore mountpoints and, from these

mountpoints, explore device filesystems to determine the paths of the files to be synchronized. The

mountpoints and synchronization paths are needed by mm-sync.

Copyright © 2015, QNX Software Systems Limited22

Setting up the Multimedia Synchronizer Environment

mmsyncclient command utility

Manage mediastore synchronizations

Synopsis:

mmsyncclient [-e] <mmsync_dev> <command> [<command args>]

Options:

-e

Enable event listen mode. This option causes mmsyncclient to print synchronization events

to the standard output. You can redirect the output to a file if you want to save the output.

The following is an example of typical output produced when the -e option is enabled:

Event listen mode, Ctrl + C to exit.

MMSYNC_EVENT_MS_SYNC_STARTED(operation ID 3)

MMSYNC_EVENT_MS_SYNC_FIRST_EXISTING_FID(1, operation ID 3)

MMSYNC_EVENT_MS_1PASSCOMPLETE(operation ID 3)

MMSYNC_EVENT_MS_2PASSCOMPLETE(operation ID 3)

MMSYNC_EVENT_MS_3PASSCOMPLETE(operation ID 3)

MMSYNC_EVENT_MS_SYNCCOMPLETE(operation ID 3)

Arguments:

<mmsync_dev>

The device object to use in synchronizations. You must specify the same device used by

the mm-sync service you started earlier. The default device is /dev/mm-sync, but if you

overrode this when starting mm-sync, the device specified here must match.

<command> [<command args>]

The following synchronization commands are supported:

• sync_start (p. 24)

• sync_suspend (p. 25)

• sync_resume (p. 25)

• sync_cancel (p. 26)

• sync_status_get_byid (p. 26)

• sync_status_get_bydbname (p. 26)

• sync_status_get (p. 27)

• sync_status_get_dbname (p. 27)

• sync_debug_set (p. 27)

• sync_control (p. 27)

Copyright © 2015, QNX Software Systems Limited 23

Setting up the Multimedia Synchronizer Environment

Description:

The mmsyncclient utility allows you to perform synchronizations and monitor their progress through

the command line. When you start a synchronization, mmsyncclient displays an operation ID (op_id),

which you can use to pause, resume, or cancel the synchronization or to check its progress at a later

time. With the sync_debug_set command, you can control how much activity and debugging

information is logged, which is useful for troubleshooting.

Commands:

sync_start

Start a synchronization of the media content within the specified path on the mediastore that is

accessible at the specified mountpoint. The media content is synchronized to the database identified

by the device path.

mmsyncclient [-e] <mmsync_dev>

sync_start <db> <mountpoint> <syncpath> <options>

[<extended_options>]

This command accepts the following parameters:

<db>

The device path of the database where the content is to be synchronized.

<mountpoint>

The mountpoint of the mediastore to synchronize.

<syncpath>

The relative path of the file or folder to synchronize.

<options>

The synchronization options (MMSYNC_OPTION_*). You may use one or many of these

options to control which synchronization passes get done, whether subfolders are recursively

synchronized, and when folder information is updated to reflect the current mediastore files

and playlists.

<extended_options>

(Optional) A set of key/value pairs with extended synchronization options, formatted as a

comma-separated list of pairs:

key1=value1,key2=value2,key3=value3,...

DescriptionValueKey

Use the requested synchronizer unless it

doesn't support the current operation.

“mss name” (a supported

synchronizer, as a string in

quotes; e.g., "dvdaudio")

use_

synchronizer

Copyright © 2015, QNX Software Systems Limited24

Setting up the Multimedia Synchronizer Environment

DescriptionValueKey

Force the use of the requested synchronizer,

whether or not it supports the current

operation.

“mss name” (a supported

synchronizer, as a string in

quotes; e.g., "dvdvideo")

force_

synchronizer

Enable or disable the dynamic setting for

the folder listed in syncpath . The fids for

enable | disabledynamic_folder

files in this folder will remain constant while

this setting is enabled. The setting is

nonrecursive, so only the files in the

top-level folder in syncpath are affected;

files in subfolders aren't affected.

For information on how this setting impacts

synchronization, see “Maintaining constant

IDs for updated files and playlists (p. 61)”.

Retrieve only the listed metadata fields.

This setting affects only directed

The metadata fields to be

read, as name-value pairs

separated by semi-colons:

metadata_keys

synchronizations in which

dynamic_folder is enabled.
md_title_name=

Poltergeist;

md_title_genre=

Horror;

md_title_album=

UnleashTheDemons;

md_title_artist=Mr_X

When you define metadata_keys, the

libmd library isn't used for metadata

extraction; instead, mm-sync sets the

metadata fields to the values listed in this

option. Note that you must provide values

for each field that you list.

sync_suspend

Suspend a synchronization.

mmsyncclient [-e] <mmsync_dev> sync_suspend <op_id> [flags]

This command accepts the following parameters:

<op_id>

The operation ID of the synchronization to suspend

flags

(Optional) Use MM_SYNC_SUSPEND_FLAGS_WAIT to block until the synchronization thread

has been suspended; otherwise, set to 0

sync_resume

Resume a suspended synchronization.

mmsyncclient [-e] <mmsync_dev> sync_resume <op_id> [flags]

Copyright © 2015, QNX Software Systems Limited 25

Setting up the Multimedia Synchronizer Environment

This command accepts the following parameters:

<op_id>

The operation ID of the suspended synchronization to resume

flags

(Optional) Must be 0; reserved for future use

sync_cancel

Cancel a synchronization.

mmsyncclient [-e] <mmsync_dev> sync_cancel <op_id> [flags]

This command accepts the following parameters:

<op_id>

The operation ID of the synchronization to cancel

flags

(Optional) Must be 0; reserved for future use

sync_status_get_byid

Get the status of a synchronization, based on the operation ID.

mmsyncclient [-e] <mmsync_dev> sync_status_get_byid <op_id> [flags]

This command accepts the following parameters:

<op_id>

The operation ID of the synchronization whose status is to be returned

flags

(Optional) Must be 0; reserved for future use

sync_status_get_bydbname

Get the status of a synchronization, based on the database name.

mmsyncclient [-e] <mmsync_dev>

sync_status_get_bydbname <db_name> [flags]

This command accepts the following parameters:

<db_name>

The name of the database whose status information is to be returned

flags

(Optional) Must be 0; reserved for future use

Copyright © 2015, QNX Software Systems Limited26

Setting up the Multimedia Synchronizer Environment

sync_status_get

Get the status of all current synchronizations.

mmsyncclient [-e] <mmsync_dev> sync_status_get

This command has no parameters.

sync_status_get_dbname

Get the name of the database being used in a specific synchronization.

mmsyncclient [-e] <mmsync_dev>

sync_status_get_dbname <op_id> [flags]

This command accepts the following parameters:

<op_id>

The operation ID of the synchronization whose database's name is to be returned

flags

(Optional) Must be 0; reserved for future use

sync_debug_set

Set the logging verbosity and debugging levels.

mmsyncclient [-e] <mmsync_dev>

sync_debug_set <verbose> <debug>

This command accepts the following parameters:

<verbose>

The new verbosity setting to use

<debug>

The new debug setting to use

sync_control

Send commands to a synchronization in progress.

mmsyncclient [-e] <mmsync_dev>

sync_control <op_id> <extended_options> [flags]

This command accepts the following parameters:

<op_id>

The operation ID of the synchronization being controlled

Copyright © 2015, QNX Software Systems Limited 27

Setting up the Multimedia Synchronizer Environment

<extended_options>

A set of key/value pairs with synchronization control commands, formatted as a

comma-separated list of pairs:

key1=value1,key2=value2,key3=value3,...

DescriptionValueKey

The action to perform on the synchronization.Currently, only one action

is supported:

priority_folder_set

action

The folder the action is performed on. Either this

field or folder_path must be defined for actions

An integer storing the ID

of a mediastore folder.

folderid

such as priority_folder_set that affect a

particular folder.

The folder the action is performed on. Either this

field or folderid must be defined for actions such

A string storing the path

of a mediastore folder.

folder_path

as priority_folder_set that affect a

particular folder.

The path is relative to the

mediastore's filesystem

(e.g., “/” refers to the

mediastore's root folder).

Enable or disable the dynamic setting for the

folder referred to by either folderid or

enable | disabledynamic_

folder

folder_path . This option applies to the

priority_folder_set action.

When this setting is enabled, the fids for files

in this folder will remain constant. The setting is

nonrecursive, so the only files affected are those

in the top-level folder in the synchronization path

named in the operation <op_id> ; files in

subfolders aren't affected.

For information on how this setting impacts

synchronization, see “Maintaining constant IDs

for updated files and playlists (p. 61)”.

DescriptionAction

Initiates a priority folder synchronization. Requires one of the

folderid and folder_path key/value pairs. You can also define the

priority_folder_set

dynamic_folder key to enable or disable the dynamic folder

setting.

flags

(Optional) Must be 0; reserved for future use

Copyright © 2015, QNX Software Systems Limited28

Setting up the Multimedia Synchronizer Environment

Returns:

With the sync_start command, when the synchronization starts successfully, mmsyncclient returns

a text string with the operation ID, which allows you to monitor and control the synchronization in

follow-up commands. When the synchronization does not start successfully, a text string with a failure

message and a return code of -1 is returned.

All other commands return at a minimum a text string with the return code (rc) and error number

(errno). A return code of 0 means the operation completed successfully and is accompanied by an

error number of 0. A nonzero return code (typically, -1) means an error occurred. See errno for which

error it was and sloginfo for details about the error.

The commands that get synchronization status will return information on the progress of one or many

synchronizations, when those commands complete successfully. With the sync_status_get_byid

and sync_status_get_bydbname commands, mmsyncclient returns a text string with the following

information:

• <op_id> , the operation ID of the synchronization

• Completed , flags indicating the synchronization passes that have been completed

• Current , flag indicating which synchronization pass, if any, is in progress

• Pending , flags indicating the synchronization passes that have not yet been started

When either of these two commands fails, mmsyncclient returns a text string with the operation ID or

database name for the synchronization whose status could not be attained, along with an error string

and number. If you provide an operation ID or a database name that doesn't refer to any active

synchronization, the standard message containing the return code and error number is returned, with

both fields set to 0 because no error actually occurred.

The sync_status_get command produces similar output except that when successful, the status

of not just one but all active synchronizations is displayed, and the return code is the number of

synchronizations in progress or pending. If this command fails, the return code and error number are

returned, with rc being nonzero and errno set based on the error that occurred.

With sync_status_get_dbname, if the operation ID refers to an active synchronization, mmsyncclient
returns a text string naming the database being used in the specified synchronization. Otherwise, the

standard message containing the return code and error number is returned. If there's no active

synchronization with the given operation ID, the return code is 0, because no error actually occurred.

If the command fails, the return code is nonzero and errno is set based on the error that occurred.

Related Links

Synchronizer selection (p. 10)

The mm-sync service provides many synchronizers designed for various media and storage devices.

Some synchronizers can extract the metadata from a certain device, media type, or playlist better than

other synchronizers. When mm-sync receives a synchronization request, it selects the best synchronizer

to use for the content being synchronized and for the device and media type.

mm-sync command line (p. 21)

Start multimedia synchronization engine

Copyright © 2015, QNX Software Systems Limited 29

Setting up the Multimedia Synchronizer Environment

Chapter 3
Working with Synchronizations

You can design your media applications to invoke mm-sync to update the databases at specific times,

based on when certain tracks must become playable. In this case, your applications must determine

which media files need to be synchronized and then provide the appropriate path to mm-sync to start

the synchronization.

Your client applications may need to guarantee a certain level of metadata availability and accuracy

to end users. You can meet such user experience goals by using the following three advanced features:

• progress tracking, which monitors synchronization pass completion

• priority folder synchronization, which allows you to synchronize some content before all other

content

• database verification and repair, which performs an integrity check and, if necessary, fixes

inconsistencies of synchronized metadata

Copyright © 2015, QNX Software Systems Limited 31

Synchronizing media content from applications

Media applications can manually detect mediastore attachments and start synchronizations. To do

this, applications must read a PPS object to learn the mediastore mountpoints and, from these

mountpoints, explore device filesystems to determine the paths of the files to be synchronized. The

mountpoints and synchronization paths are needed by mm-sync.

To detect a mediastore and synchronize its media metadata, your application must:

1. Monitor mediastore attachments

Your application must subscribe to the /pps/qnx/mount/.all PPS object to monitor mediastore

attachments. When the user attaches a mediastore, the appropriate device publisher writes the

device's information to this object. For devices connected through USB (e.g., iPods and USB sticks),

the usblauncher service publishes the device information; for SD cards, the mmcsdpub service

publishes it.

2. Load the database for a newly attached mediastore

When your application notices a new entry in the .all object, it must read that entry's id attribute

to obtain the mediastore's unique ID. Your application can then check if the database whose name

contains this unique ID is loaded and if not, load that database by writing its configuration object

into the QDB database configuration directory (/pps/qnx/qdb/config/).

You must load a database before trying to synchronize or play media content on the corresponding

device because the mm-sync and mm-renderer services can't load databases. For more details on

loading databases, see “Loading QDB databases”.

3. Determine the media content to synchronize

Before it can determine what content needs to be synchronized, your application must read the

mount attribute in the .all object entry to learn the mediastore's mountpoint. From this mountpoint,

your application can explore the mediastore's content and read file information.

The decision to synchronize specific files or folders can depend on many factors, including their

last synchronization time (if known), the available system resources, and the mediastore's type.

New files and folders must be synchronized if they contain media that the user might play. Folders

with fewer files than before may need to be resynchronized to ensure that their database information

is up to date.

4. Connect to mm-sync

If no content needs to be synchronized, your application can skip the rest of these steps and start

querying the database to retrieve media metadata and use it as desired. Otherwise, your application

must connect to mm-sync by calling mm_sync_connect() (p. 68), so it can then use the service to

upload the media metadata.

5. Register for mm-sync events

Your application can request to receive event notifications by calling

mm_sync_events_register() (p. 97). The function's event argument must be set to a struct sigevent
object initialized with the type of notification to deliver with each event. Event notifications allow

you to track synchronization progress and to learn of any errors that occur.

Copyright © 2015, QNX Software Systems Limited32

Working with Synchronizations

6. Start synchronizing media content

Your application can now start synchronizing media content by calling mm_sync_start() (p. 75).

In this funcation call, you must provide the path of the device object used by the mediastore's

database, the mediastore's mountpoint, and a synchronization path containing the content that

you want to synchronize. The device object is stored in /pps/qdb/ and has the same name as the

database.

The function call returns a synchronization ID, which you must provide in subsequent API calls

(e.g., sync_status_get_byid()) to refer to the same synchronization operation.

7. Monitor mm-sync events

To monitor mm-sync events, your application must make the appropriate OS system call to wait

for the notification defined in Step 5 (p. 32). When it recieves that notification, your application

must call mm_sync_events_get() (p. 96) to retrieve the event information.

The MMSYNC_EVENT_MS_SYNCCOMPLETE event means that all the media information that you

requested has been uploaded to the database, so you can now use that information.

8. Disconnect from mm-sync

If your application needs to synchronize metadata from another path, it can return to Step 6 (p. 33)

to start a new synchronization. The decision to synchronize more metadata might depend on user

activity. For instance, if you display a cover flow to represent the available albums, the user could

select another album and your application would then need to synchronize the metadata found in

the mediastore path that stores the album's tracks.

When it has synchronized all the media metadata it needs, your application can disconnect from

mm-sync by calling mm_sync_disconnect() (p. 73).

The database for the newly attached mediastore contains the media metadata required by your

application. You can issue SQL queries against the database to read the file information and the

creation and display information for audio tracks, video files, and photos on the mediastore. You must

keep the database in memory for as long as your application needs to access metadata related to the

media content on the mediastore. This may be long after you've finished synchronizing the metadata

to the database. For details on unloading databases, see “Unloading QDB databases”.

Exploring mediastores through directed synchronizations

You can synchronize content incrementally through directed synchronizations (p. 17), which entail

giving mm_sync_start() a synchronization path of one folder. After a synchronization completes, you

can examine the files and folders database tables and pick a specific subfolder to synchronize in the

next mm_sync_start() call. In this manner, you can explore a mediastore by using database queries

and directed synchronizations.

Related Links

Full, directed, and file synchronizations (p. 17)

The multimedia synchronizer doesn't provide separate controls for synchronizing an entire mediastore

versus certain folders or files. You use the same function call to synchronize content whether it's a

full, recursive synchronization of all the mediastore content or of only a folder, file, or playlist.

mm-sync command line (p. 21)

Copyright © 2015, QNX Software Systems Limited 33

Working with Synchronizations

Start multimedia synchronization engine

mm_sync_connect() (p. 68)

Connect to mm-sync and obtain a handle

mm_sync_events_get() (p. 96)

Get the next queued mm-sync event

mm_sync_events_register() (p. 97)

Register or unregister for mm-sync event notifications

mm_sync_start() (p. 75)

Start a synchronization

Maintaining database persistence

The mm-sync service doesn't create, load, or unload databases. When the user attaches a mediastore,

the application must ensure that the mediastore's database is loaded before any synchronization can

begin. When the application has finished using a mediastore or the user detaches it, the application

can unload the database to free memory.

Client applications must ensure database persistence between uses of specific mediastores. For

example, suppose the user plugs a USB stick into their system, then removes and reinserts the same

device. The application writer must ensure that the database stays in memory or is reloaded when the

USB stick is reinserted, so the user can once again access and play the device's media content. Keeping

the database for a recently used device in memory can greatly speed up resynchronizations—recently

used devices are likely to be reinserted soon and you can save significant time by not having to reload

their databases.

Making databases available to applications

When a mediastore is inserted for the first time, your application must create a database configuration

file that names the raw storage file (which has the same name as the database itself) and must copy

the configuration file into the QDB database configuration directory (/pps/qnx/qdb/config/).

When a mediastore is inserted any subsequent time, the application just needs to copy the configuration

file into the same directory to reload the database, as explained in “Setting up the Multimedia

Synchronizer Environment (p. 19)”.

We recommend using the mediastore's unique ID (UID) and the device type (both can be read from

the /pps/qnx/mount/.all PPS object) to form the database name. The device type should be included

in the name to avoid a naming conflict that would arise if two or more devices were assigned the same

UID by independent system components that each write to the PPS mountpoint information object.

Suppose the user inserts both an iPod and an audio CD, and both devices are assigned a UID of

4f587192-d2fe-4efb-9fec-cd35531cfa45 by the separate components that publish iPod and

CD device information in PPS. In this case, the device databases could be named

iPod-4f587192-d2fe-4efb-9fec-cd35531cfa45 and

audioCD-4f587192-d2fe-4efb-9fec-cd35531cfa45 to eliminate ambiguity.

This naming practice makes it easy to check if the relevant database exists or is loaded, because the

same value read from the PPS object can be used in the search string when looking up the database

file by name.

Copyright © 2015, QNX Software Systems Limited34

Working with Synchronizations

Determining when to unload databases

When your client application knows that a mediastore database won't be needed for some time (e.g.,

when the device has been removed and no other media applications are running) or if memory is low,

your client should unload the database to free some memory.

For each database you want to unload, you must:

1. Delete the configuration object with the same name as the database to unload, from the config
subdirectory under the PPS configuration path (/pps/qnx/qdb/).

QDB removes the database from its control. QDB also deletes the status file in the status subdirectory

because the database is no longer visible.

2. If the database storage file is stored in RAM, move that file to persistent storage.

You can speed up media applications by storing your QDB databases in RAM, but you must remember

to move the storage files for any unused databases out of RAM and into persistent storage to avoid

overusing system memory.

Keeping inactive databases in persistent storage reduces the memory requirements of media

applications while retaining important mediastore metadata. You can copy a device's database

back into RAM when you need to access the device's media information again.

Related Links

mm-sync command line (p. 21)

Start multimedia synchronization engine

Copyright © 2015, QNX Software Systems Limited 35

Working with Synchronizations

Tracking synchronization progress

You can track synchronization progress in terms of what passes have been completed for a mediastore

by reading the syncflags database field or by retrieving the synchronization status through the mm-sync
API.

The mm-sync service updates the syncflags field in the mediastore_metadata table when a

synchronization pass successfully completes. The syncflags field uses separate bits to indicate which

of the three passes are complete, represented as follows:

• The least-significant bit (bit 0) indicates whether the files pass has been completed (001)

• The next-significant bit (bit 1) indicates whether the metadata pass has been completed (010)

• The next-significant bit (bit 2) indicates whether the playlist pass has been completed (100)

For example, a value of 0 in syncflags means that no synchronization passes have been completed; a

value of 5 (101) means that the file and playlist passes have been completed, but the metadata pass

was skipped. A value of 7 (111) indicates that all three synchronization passes have been completed.

These flags are not cleared if the device is made inactive. When a disk is moved out of the active slot

while in a multidisk changer, the disk is not made unavailable, only inactive. Therefore, this action

doesn't clear any existing synchronization flags in the syncflags field.

API functions for retrieving synchronization status

You can call the mm_sync_status_get(), mm_sync_status_get_byid(), and

mm_sync_status_get_bydbname() API functions to monitor synchronization progress. The mm-sync
API stores synchronization progress information in the mmsync_status_t data type, with three fields:

passes_done, current_pass, and passes_to_do. These fields have the same format as the syncflags
database field.

Suppose you start a synchronization and request all three passes, and then cancel the operation just

as the files pass is successfully completing. If you then get the synchronization status through the

API, the passes_done value is 1 (001), the current_pass value is 0 (000), and the passes_to_do value

is 6 (110). These values show that only the first pass was done and that no pass is in progress.

Tracking folder synchronizations

The mm-sync process also marks synchronization progress at the folder level by updating the synced
field in the folders table entry for a specific folder as soon as its contents have been synchronized.

When the recursive option is set, mm-sync starts from the folder named in the path and descends into

the subfolders, meaning individual folders get synchronized at different times during each requested

pass. The synced field allows client applications to know when a given folder has been synchronized,

which means its database information will not change.

An alternative to polling the synced field is for your client application to register for synchronization

events and specify, in the configuration file, which optional folder-based synchronization events to

deliver. Tracking progress through folder events is helpful when synchronizing a priority folder.

Related Links

Synchronization passes (p. 11)

Copyright © 2015, QNX Software Systems Limited36

Working with Synchronizations

The mm-sync service synchronizes media information in three passes known as the files, metadata,

and playlist passes. The default behavior is to perform all three passes but you can perform any subset

of these passes by setting the right flags when requesting a synchronization.

Setting a priority folder (p. 38)

Depending on user actions, your client application may need to interrupt a synchronization in progress

and begin synchronizing a new folder. The priority folder synchronization feature helps you reduce the

time required for making media content from a certain folder available for viewing or playing.

Repairing database inconsistencies (p. 40)

If you find that the database information for a folder doesn't match what's actually on the mediastore

at some point after you synchronized the folder, you can repair the inaccurate database content by

calling mm_sync_start() or running sync_start with special parameters.

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

mm_sync_status_get() (p. 78)

Get the statuses of active synchronizations

mm_sync_status_get_bydbname() (p. 80)

Get the status of a synchronization based on the database name

mm_sync_status_get_byid() (p. 81)

Get the status of a synchronization based on the operation ID

Copyright © 2015, QNX Software Systems Limited 37

Working with Synchronizations

Setting a priority folder

Depending on user actions, your client application may need to interrupt a synchronization in progress

and begin synchronizing a new folder. The priority folder synchronization feature helps you reduce the

time required for making media content from a certain folder available for viewing or playing.

Suppose your application must display up-to-date folder information in a mediastore file browser and,

during a synchronization, the user selects a different folder to view or play tracks from. In this case,

you should do a priority synchronization of the newly selected folder. This action displays the folder's

metadata and makes the folder's media files playable ahead of files in other folders.

To start a priority folder synchronization, call mm_sync_control() or run the sync_control command

with the following extended option settings:

• The action key is set to “priority_folder_set”.

• Either the folderid or folder_path key is set to refer to the folder you want to synchronize

immediately. You can look up the folderid in the folders table. If you use folder_path , you must

provide a relative path within the mediastore's filesystem (e.g., “/” refers to the mediastore's root

directory).

When it receives such a request, mm-sync interrupts any synchronization in progress on the same

device on which the priority folder is stored and synchronizes the priority folder's contents before

resuming the original synchronization.

The priority folder feature has the following behavior:

• Requests to synchronize the current folder are silently ignored.

• Priority synchronizations can't be recursive; only the priority folder (and not its subfolders) is

synchronized before the original synchronization resumes.

• Priority synchronizations can be done only on a mediastore currently being synchronized, because

the invocation command requires a valid operation ID.

• The synchronization passes done for the priority folder are the same as those requested in the

original synchronization.

• New priority synchronization requests preempt any priority synchronization in progress, meaning

the second priority folder gets synchronized, then the first folder (whose synchronization was

interrupted) gets synchronized, and then the original synchronization resumes.

• Priority synchronization requests are queued, so if a second request is sent before the synchronization

for the first request is started, the second priority folder gets synchronized, then the first folder,

and then the original synchronization resumes.

Related Links

Tracking synchronization progress (p. 36)

You can track synchronization progress in terms of what passes have been completed for a mediastore

by reading the syncflags database field or by retrieving the synchronization status through the mm-sync
API.

Repairing database inconsistencies (p. 40)

Copyright © 2015, QNX Software Systems Limited38

Working with Synchronizations

If you find that the database information for a folder doesn't match what's actually on the mediastore

at some point after you synchronized the folder, you can repair the inaccurate database content by

calling mm_sync_start() or running sync_start with special parameters.

mm_sync_start() (p. 75)

Start a synchronization

mm_sync_control() (p. 69)

Send commands to a synchronization in progress

Copyright © 2015, QNX Software Systems Limited 39

Working with Synchronizations

Repairing database inconsistencies

If you find that the database information for a folder doesn't match what's actually on the mediastore

at some point after you synchronized the folder, you can repair the inaccurate database content by

calling mm_sync_start() or running sync_start with special parameters.

The mmsync verification and repair feature can repair inconsistencies in the database fields for a folder

and for the files and playlists associated with that folder. If you're aware of many file and playlist

additions, removals, or renamings in a mediastore folder since that folder was last synchronized, you

may want to check that the data is consistent between the various fields and tables that represent the

media files stored in that same folder on the device.

Verifying and optionally repairing folder data is often faster than resynchronizing the folder because

the former doesn't entail uploading all file, folder, and playlist information for the folder being checked.

Instead, the verification step queries the database to determine if the data in the folders table entry

is consistent with the data in all files, folders, and playlist table entries that refer to that folder. The

service logs any inconsistencies found and any information that is unable to be retrieved. The repair

step updates database fields to eliminate any data inconsistencies between the related table entries

and then logs this activity.

To verify the database information for a folder, look up the folder's path in the folders table, then call

mm_sync_start() or run the sync_start command with this retrieved path as the path argument and

with the MMSYNC_OPTION_VERIFY flag enabled.

To perform the extra step of repairing inconsistencies in the folder data, enable the

MMSYNC_OPTION_REPAIR flag in addition to the verification flag. If mm-sync is unable to repair any

inconsistencies, it notes the incomplete repair work in the system log. In such cases, there's probably

a database problem that requires immediate attention.

You can verify and repair the database information not just for one folder but for a folder and

all its subfolders by setting the MMSYNC_OPTION_RECURSIVE flag in the command or API

call.

Related Links

Tracking synchronization progress (p. 36)

You can track synchronization progress in terms of what passes have been completed for a mediastore

by reading the syncflags database field or by retrieving the synchronization status through the mm-sync
API.

Setting a priority folder (p. 38)

Depending on user actions, your client application may need to interrupt a synchronization in progress

and begin synchronizing a new folder. The priority folder synchronization feature helps you reduce the

time required for making media content from a certain folder available for viewing or playing.

mm_sync_start() (p. 75)

Start a synchronization

Copyright © 2015, QNX Software Systems Limited40

Working with Synchronizations

Chapter 4
Configuring Mediastore Synchronization

The mm-sync configuration file is an XML file whose elements and attributes control how media content

gets synchronized from devices into databases. An XML configuration file is a convenient way of defining

and enforcing policies on what gets synchronized and how media information is represented in the

database.

A default configuration file (/etc/mm/mm-sync.conf) is included in the product. This file includes

comments that describe the purposes of its XML elements (tags) and attributes. It also contains default

values for the various configuration settings, most of which are expressed as comments. To enable a

configuration setting, uncomment its tag.

You can define your own configuration file to customize synchronization behavior to suit your system's

needs. In the configuration file, you can:

• set synchronization thread priorities to adjust the speed of synchronizations and what resources

they consume

• limit how many files in one folder can be synchronized and how many directory levels can be

searched

• filter the synchronization of media files and playlists based on file extensions

• map the fields received from metadata providers to storage fields in the database

• manage the database size by setting a threshold size value for stopping metadata synchronization

The settings in the default mm-sync configuration file are presented in table format. Each

table row provides the tag name, attribute, default value, and functional description for one

configuration setting. When the Attribute column is blank, the setting in the Default column

refers to the element (tag) value. When the Attribute and Default columns are both blank, the

referenced element contains other elements, whose purposes are summarized in the Description
column.

Copyright © 2015, QNX Software Systems Limited 41

Configuration file contents

The configuration file contains a hierarchy of XML elements that control all synchronization features.

Your own file must follow the prescribed structure so the synchronizer service can properly parse your

file, but you need to include only those elements that specify the properties you want to use.

Numeric settings are expressed as element values between the opening and closing tags. Boolean

settings, filenames, and database fields are assigned to element attributes. The mm-sync service uses

system default values for any required settings it can't find in the configuration file or for those that

have invalid values.

The configuration file consists of the XML version declaration (e.g., <?xml version="1.0" ?>) followed

by the <Configuration> root element, which contains all other elements.

The <Configuration> element

The <Configuration> element defines the device path used by mm-sync and contains the <Database>
element, which controls the synchronization process behavior.

The contents of the <Configuration> element are:

DescriptionDefaultAttributeTag name

Sets the path of the device object used in synchronizations.

This path can be overridden in the mm-sync command line.

/dev/mm-syncPath<ControlContext>

Defines some general database settings and the settings that

control media synchronization and database size.

<Database>

Related Links

The <Configuration>/<Database> element (p. 42)

The <Configuration>/<Database> element defines some general database settings and the settings

that control media synchronization and database size.

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

The <Configuration>/<Database>/<Prune> element (p. 50)

The <Configuration>/<Database>/<Prune> element defines values that influence how mm-sync monitors

the database size and stops synchronization of metadata if the database gets too big.

The <Configuration>/<Database> element

The <Configuration>/<Database> element defines some general database settings and the settings

that control media synchronization and database size.

The contents of this element are:

Copyright © 2015, QNX Software Systems Limited42

Configuring Mediastore Synchronization

DescriptionDefaultAttributeTag name

Sets automatic adjustment of the internal timebase.

For systems that don't have a stable realtime clock,

falseenabled<TimebaseSet>

enabling this option causes the synchronization thread

to adjust its internal timebase so that all time values

used in the database remain monotonically increasing.

Sets a timeout for the database (in milliseconds). A

setting of 0 disables the timeout; nonzero values

0<Timeout>

enforce it. Note that nonzero values can create errors

because of operations that take longer than the

specified timeout.

Overrides the character-encoding conversion with

another library that implements similar functionality.

custom_char_

converter.so

dll<CharacterEncodingConverter>

Defines the settings that control synchronization,

including the optimization of system resources, the

<Synchronization>

file types to include or exclude, the mapping of

metadata provider fields to database fields, and

policies for media data and playlists.

Defines values that influence how mm-sync monitors

the database size and stops synchronization of

metadata if the database gets too big.

<Prune>

Related Links

The <Configuration> element (p. 42)

The <Configuration> element defines the device path used by mm-sync and contains the <Database>
element, which controls the synchronization process behavior.

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

The <Configuration>/<Database>/<Prune> element (p. 50)

The <Configuration>/<Database>/<Prune> element defines values that influence how mm-sync monitors

the database size and stops synchronization of metadata if the database gets too big.

The <Configuration>/<Database>/<Synchronization> element

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

The elements that define the synchronization settings make up the bulk of the configuration file. It's

helpful to visualize the synchronization elements based on the area of functionality they control.

Copyright © 2015, QNX Software Systems Limited 43

Configuring Mediastore Synchronization

Resource optimization elements

DescriptionDefaultAttributeTag name

Sets the priority of the foreground synchronization threads. A

setting of 0 enforces the default priority, which is the same

0<Priority>

priority that the mm-sync service uses at startup. Nonzero

values assign absolute priorities.

Sets the synchronization merge thread's priority adjustment.

This value is added to the synchronization thread priority to

1<MergePriorityAdjust>

derive the merge thread priority. The default behavior is to

add 1 to the synchronization thread priority.

Sets the maximum number of foreground synchronization

threads permitted to run at a time.

8<MaxThreads>

Sets the maximum directory structure depth to recursively

visit when synchronizing a mediastore. This setting also applies

to priority folders.

8<MaxRecursionDepth>

Sets the maximum number of synchronization records in the

buffers between the foreground and background

250<MaxSyncBuffers>

synchronization threads. More buffers increases memory usage,

but speeds up synchronization.

Database size management elements

DescriptionDefaultAttributeTag name

When enabled, ensures media and playlist files with a

changed size or modification date keep the same ID value

offenabled<ChangedFilesHaveConstantId>

in the database. In such cases, the files and playlists
table entries for the changed items have their accurate

flags cleared, but there's no other indication that these

items have changed. This setting helps limit the database

size by preventing new rows from being created whenever

a file is changed, which happens when the ID values are

not kept the same.

For more information on how this setting impacts

synchronization, see Maintaining constant IDs for updated

files and playlists (p. 61).

Controls whether or not synchronization stops when a

database limit is reached.

falseenabled<StopOnDbLimit>

Copyright © 2015, QNX Software Systems Limited44

Configuring Mediastore Synchronization

Event elements

DescriptionDefaultAttributeTag name

Controls what optional synchronization events are delivered.

Currently, only the delivery of folder events is controllable.

trimonlyfolder<Events>

Acceptable values are on, off, and trimonly. You should

use trimonly to send folder events only when a folder object

(file, folder, playlist) is deleted. Use on to send events

following folder object additions, modifications, and deletions.

Use off to disable event sending.

Sets the maximum number of

MMSYNC_EVENT_MS_SYNC_FIRST_EXISTING_FID events

1<MaxFirstFidEvent>

sent during synchronization. These events are sent during the

files pass when mm-sync finds a media file that's playable

and is already in the database. A setting of n causes mm-sync
to return this event for the first n existing files found.

Synchronization filter elements

DescriptionDefaultAttributeTag name

Defines a POSIX regular expression (regex) pattern

for naming files you do not want synchronized. Only

(empty)<SyncFileMask>

one SyncFileMask can be specified. The default

setting is an empty mask, meaning no files will be

skipped during synchronization.

Controls the prescan done on each folder. You can

configure mm-sync to skip the synchronization of

<NonMediaItems>

folders found to have too much nonmedia content

during the prescan. The prescan parameters are set

through the elements contained in the

<NonMediaItems> element.

Limits how many nonmedia files can be found in a

folder before that folder is skipped from

synchronization. A setting of 0 disables this limit.

0<NonMediaItems>/<MaxItems>

Sets whether the limit of nonmedia files is a

consecutive file limit. The file order is generally not

falseconsecutive

guaranteed, so using a consecutive limit could yield

nondeterministic results. When this setting is

disabled, as is the default, MaxItems is a limit of

total files.

Limits how many files can be scanned when searching

for media content in a folder. A setting of 0 disables

0<NonMediaItems>/<PrescanLimit>

this limit and forces the entire folder to be scanned;

nonzero values enforce a limit on the files scanned.

Copyright © 2015, QNX Software Systems Limited 45

Configuring Mediastore Synchronization

DescriptionDefaultAttributeTag name

Controls the maximum number of items read from a

folder. This limit excludes "." and "..", but includes

0<MaxFolderItems>

any items whose filenames match the pattern in

<SyncFileMask>. A setting of 0 disables this limit;

nonzero values enforce it.

Controls the maximum number of items read from

mediastores. For each mediastore on which you want

<MaxMediaStoreItemsConfiguration>

to impose a limit of items read, define a separate

<MaxMediaStoreItems> element.

Limits the number of items read from a mediastore.

This limit excludes "." and "..", but includes any items

100<MaxMediaStoreItemsConfiguration>/
<MaxMediaStoreItems>

whose filenames match the pattern in

<SyncFileMask>. A setting of 0 disables this limit;

nonzero values enforce it.

Names the mediastore the limit of items read applies

to.

(none)mediastore

Specifies which file extensions are supported,

allowing you to filter the synchronization of content

<extensions>

by file type. This element contains the <playlists>
element, which lists supported playlist extensions,

and the <library> element, which lists supported

media file extensions. Files with unlisted extensions

aren't synchronized.

Advanced configuration elements

Some synchronization elements contain many other elements that collectively configure helper utilities

such as plugins and playlist synchronizers used by mm-sync to perform advanced tasks.

DescriptionName

Defines the metadata provider fields that are copied into specific database fields. The

mm-sync service has no special knowledge of this metadata but will pass it along to the

database.

<ConfigurableMetadata>

Contains elements that configure mediastore synchronizers (MSSs). Currently, only the

synchronizers for Apple devices can be configured in this area.

<MSS>

Defines resource usage limits and filename-matching parameters for playlist session

synchronizers (PLSSs). This element can also name a nondefault configuration file for

the library that mm-sync uses to synchronize playlists.

<PLSS>

Related Links

The <Configuration> element (p. 42)

Copyright © 2015, QNX Software Systems Limited46

Configuring Mediastore Synchronization

The <Configuration> element defines the device path used by mm-sync and contains the <Database>
element, which controls the synchronization process behavior.

The <Configuration>/<Database> element (p. 42)

The <Configuration>/<Database> element defines some general database settings and the settings

that control media synchronization and database size.

The <Configuration>/<Database>/<Synchronization>/<MSS> element (p. 49)

The <Configuration>/<Database>/<Synchronization>/<MSS> element configures mediastore

synchronizers (MSSs) for specific mediastore types. Currently, only the synchronizers for Apple devices

can be configured by this element.

The <Configuration>/<Database>/<Synchronization>/<PLSS> element (p. 49)

The <Configuration>/<Database>/<Synchronization>/<PLSS> element defines playlist session

synchronizer (PLSS) settings related to resource usage and playlist entry matching. This element can

also specify a configuration file for the mmplaylist library, which mm-sync uses to synchronize playlists.

The <Configuration>/<Database>/<Prune> element (p. 50)

The <Configuration>/<Database>/<Prune> element defines values that influence how mm-sync monitors

the database size and stops synchronization of metadata if the database gets too big.

Skipping files based on their names (p. 53)

The <SyncFileMask> element allows you to ignore files during synchronization based on a character

string in the filename (including the file extension).

Limiting the number of items read (p. 59)

You can limit the total number of items read from any folder or the entire mediastore. An excessively

large number of items can make using the device very slow and can cause poor response times for

synchronization operations such as changing priority folders or determining mediastore changes.

Maintaining constant IDs for updated files and playlists (p. 61)

The <ChangedFilesHaveConstantId> element in the configuration file and the dynamic_folder

option in the command for starting a synchronization both force mm-sync to keep the same IDs in the

database for media and playlist files that have been modified.

Filtering synchronization by file type (p. 55)

Client applications can filter the types of media files and playlists that get synchronized. The

<extensions> element contains the <library> and <playlists> elements, which list the extensions that

media files and playlists must have to be synchronized. Mediastore files with unlisted extensions don't

get synchronized.

The <Configuration>/<Database>/<Synchronization>/<ConfigurableMetadata> element

The <Configuration>/<Database>/<Synchronization>/<ConfigurableMetadata> element configures

metadata support. For each metadata field you want to store in the database, you must define a

<metadata> element, contained in <ConfigurableMetadata>, that maps the field read from the metadata

provider to the database storage field and defines other metadata parameters.

The <metadata> elements have the following attributes:

DescriptionAttribute

Declares the media type for the metadata. Acceptable values are audio, video, and photo.ftype

Copyright © 2015, QNX Software Systems Limited 47

Configuring Mediastore Synchronization

DescriptionAttribute

Names the database field that stores the metadata you want to synchronize. The table name is listed

first, followed by a dot (.), and then the field name. For example, a table value of

table

video_metadata.width tells mm-sync that the metadata is destined for the width field in the

video_metadata table.

(Optional)ext_table

Identifies the table and field (column) that stores the values for this bit of metadata. This table is

considered external because it's separate from the main metadata table. For instance, an ext_table

setting of artists.artist instructs mm-sync to store the metdata value (in this case, the artist

name) in the artist column of the artists table.

When you define this attribute, you must also define ext_table_rel .

(Optional)ext_table_rel

Identifies the field that relates external table entries to metadata table entries. For instance, an

ext_table_rel setting of artists.artist_id instructs mm-sync to store the artist_id field (instead

of the artist name) in the metadata table and to store the artist name in the external table entry with

the matching artist_id .

When you define this attribute, you must also define ext_table .

Names the metadata provider fields to synchronize to the database. The metadata provider name is

listed first, followed by the AT sign (@), and then a comma-separated list of applicable field names.

Details for multiple metadata providers must be separated by a semicolon.

md_map

Consider this example:

libmd@artist,albumartist;ipod@artist;

This setting tells mm-sync that the current mapping applies to the artist and albumartist fields from

the libmd metadata provider and the artist field from the ipod metadata provider. Note that metadata

is matched in left-to-right order. In this example, then, if both fields are available from libmd, only

the artist field will be used from this provider.

(Optional)maximum

Limits the maximum number of bytes for a metadata string that mm-sync writes in the field named

by table . By default, the length limit is 256 characters.

Storing metadata field values in external tables

For metadata fields with values repeated for many media files, such as artist or genre, you can save

space and improve performance by storing those field values in an external table and using an index

in the main metadata table to refer to specific values.

Suppose a mediastore contains several tracks with an artist setting of “Jamiroquai”. Instead of replicating

this string in many metadata table rows, you can store a single copy of the artist name with its associated

index in an external table, and then store the index in all metadata table entries representing tracks

by “Jamiroquai”. Storing indexes instead of strings reduces the size of metadata table rows and allows

you to sort the metadata faster because index comparisons are considerably faster than string

comparisons.

Copyright © 2015, QNX Software Systems Limited48

Configuring Mediastore Synchronization

For an individual media file, you can find its setting for any metadata field whose values are stored in

an external table by joining the metadata table with the external table on the field named by

ext_table_rel .

Suppose you have an external table genres for storing the names of musical genres and a field genre_id
for relating the external table entries to the audio_metadata table entries. If you want to list all tracks

for a given genre, say “Pop”, you can join these two tables on the genre_id field and filter the results

based on the genre name “Pop”.

The <Configuration>/<Database>/<Synchronization>/<MSS> element

The <Configuration>/<Database>/<Synchronization>/<MSS> element configures mediastore

synchronizers (MSSs) for specific mediastore types. Currently, only the synchronizers for Apple devices

can be configured by this element.

The contents of the <MSS> element are:

DescriptionDefaultAttributeTag name

Names a library file that implements a synchronization algorithm for a

particular device type.

Varies with

plugin

name<dll>

For Apple devices running iAP1, you can use three synchronizers, which are

implemented by the following libraries: mss-ipodgeneric.so, mss-ipodpb.so,
and mss-ipoduid.so.

For Apple devices running iAP2, you can use the synchronizer implemented

by mss-ipodiap2.so.

These synchronizers aren't included with the shipped version of mm-sync—to

use them, you must purchase support for Apple devices by contacting your

QNX Project Manager. Then, you can learn more about these synchronizers

by reading Working with iPods, which is shipped with the QNX Apps and

Media Interface for Apple iPod.

Related Links

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

The <Configuration>/<Database>/<Synchronization>/<PLSS> element

The <Configuration>/<Database>/<Synchronization>/<PLSS> element defines playlist session

synchronizer (PLSS) settings related to resource usage and playlist entry matching. This element can

also specify a configuration file for the mmplaylist library, which mm-sync uses to synchronize playlists.

The contents of the <PLSS> element are:

DescriptionDefaultAttributeTag name

Names the configuration file for the mmplaylist
library.

/etc/mm/

mm-playlist.conf

<MMPlaylistConfigFile>

Copyright © 2015, QNX Software Systems Limited 49

Configuring Mediastore Synchronization

DescriptionDefaultAttributeTag name

Specifies whether to ignore case when matching

playlist entries. You must ensure that the ICU library

falseignore_case<Matching>

is loaded to provide support for Unicode strings, or

the matching may produce unexpected results.

The matching will be performed based on the

language code listed in the lang_code column of the

playlists table row. You must use four-character

language codes, such as the default 'en_CA'.

Defines a POSIX regular expression (regex) for naming

unresolved playlist entries you want synchronized to

(empty)<UnresolvedEntryMask>

the playlist_entries table. Only one

UnresolvedEntryMask can be specified. The default

setting is empty, meaning no unresolved playlist

entries get synchronized.

Identifying filenames of unresolved playlist entries to be synchronized

You can define complex text patterns using special characters and regex operators to support flexible

filename matching of unresolved playlist entries. For example, to add unresolved playlist URLs for the

HTTP, HTTPS, and FTP protocols to playlist_entries, set the UnresolvedEntryMask value to:

^(http(s?)|ftp)://

The special characters and operators supported for <UnresolvedEntryMask> are the same as those

supported for <SyncFileMask>, which defines names of files to skip for synchronization.

Related Links

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

Skipping files based on their names (p. 53)

The <SyncFileMask> element allows you to ignore files during synchronization based on a character

string in the filename (including the file extension).

The <Configuration>/<Database>/<Prune> element

The <Configuration>/<Database>/<Prune> element defines values that influence how mm-sync monitors

the database size and stops synchronization of metadata if the database gets too big.

The contents of this element are:

DescriptionDefaultTag name

Sets the database size threshold (in kilobytes) for stopping synchronization. The

database size can exceed this value by the amount of space needed to store

0<MaxDatabaseSize>

information for the number of files specified in <SyncInterval>, which is an

Copyright © 2015, QNX Software Systems Limited50

Configuring Mediastore Synchronization

DescriptionDefaultTag name

indeterminate amount of space. So the threshold value serves as a size guideline

but not a hard limit.

If mm-sync checks the database size during synchronization and finds that the size

has grown beyond this value, mm-sync stops any ongoing synchronization of the

corresponding mediastore.

A setting of 0 disables this size management; values greater than 0 enforce it.

Sets the number of files added to the database by mm-sync between database size

checks. Larger values means the size can exceed the <MaxDatabaseSize> threshold

0<SyncInterval>

by a wider margin before mm-sync stops the synchronization. Smaller values mean

more frequent size checks and hence, slower synchronizations.

A setting of 0 disables size checking; values greater than 0 enforce it.

Related Links

The <Configuration> element (p. 42)

The <Configuration> element defines the device path used by mm-sync and contains the <Database>
element, which controls the synchronization process behavior.

The <Configuration>/<Database> element (p. 42)

The <Configuration>/<Database> element defines some general database settings and the settings

that control media synchronization and database size.

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

Copyright © 2015, QNX Software Systems Limited 51

Configuring Mediastore Synchronization

Setting synchronization thread priorities

You can set priorities for the foreground synchronization threads and for the merge thread. Adjusting

thread priorities can have a significant impact on system performance.

The <Priority> element controls the priority of the foreground synchronization threads. Setting the

element's value to 0 makes the foreground threads run at their default priority level, which matches

that of the mm-sync service when it's started. Nonzero values assign absolute priorities.

Running the foreground threads at a priority level two lower than the default priority level may

significantly reduce delays when changing tracks. For example, if mm-sync is running at priority 10,

you should set the prioity of the foreground synchronization threads to 8: <Priority>8</Priority>.

The <MergePriorityAdjust> element controls the priority of the merge thread, which is a background

synchronization thread that writes entries to the files table. By default, this thread runs at a priority

one higher than that of the foreground synchronization threads. For example, if the foreground

synchronization threads run at priority 10, the merge thread runs at priority 11.

Related Links

Configuration file contents (p. 42)

The configuration file contains a hierarchy of XML elements that control all synchronization features.

Your own file must follow the prescribed structure so the synchronizer service can properly parse your

file, but you need to include only those elements that specify the properties you want to use.

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

Copyright © 2015, QNX Software Systems Limited52

Configuring Mediastore Synchronization

Skipping files based on their names

The <SyncFileMask> element allows you to ignore files during synchronization based on a character

string in the filename (including the file extension).

The default configuration is to not skip any files based on their name. There can be only one

<SyncFileMask> element in the configuration file, but you can use regular expressions (regexes) to

define complex text patterns, which gives you a lot of flexibility in specifying the files to skip in

synchronizations.

Complex regex patterns slow down the files pass of synchronization.

To create the mask defining the character string that identifies the files to ignore during synchronization,

use the following syntax:

MeaningCharacter

Treat the next character as a literal\

Begins with^

Ends with$

The <SyncFileMask> element supports POSIX regular expressions, so you can use AND (&) and OR (|)

operators to create your mask.

Here are some simple masks to ignore files with names that:

begin with "."

<SyncFileMask>^\.</SyncFileMask>

The ".", which usually means any character, here means the "." (dot) character, because it's

preceeded by a "\".

contain "w"

<SyncFileMask>w</SyncFileMask>

end with "roy"

<SyncFileMask>roy$</SyncFileMask>

begin with a "." (dot) character or end with ".mp3".

<SyncFileMask>(^\.)|(\.mp3$)</SyncFileMask>

match "Recycle Bin"

<SyncFileMask>^Recycle Bin$</SyncFileMask>

If you create a file mask with multiple operators, be sure that you don't configure mm-sync to

ignore certain files that you want synchronized.

Copyright © 2015, QNX Software Systems Limited 53

Configuring Mediastore Synchronization

Related Links

Configuration file contents (p. 42)

The configuration file contains a hierarchy of XML elements that control all synchronization features.

Your own file must follow the prescribed structure so the synchronizer service can properly parse your

file, but you need to include only those elements that specify the properties you want to use.

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

Filtering synchronization by file type (p. 55)

Client applications can filter the types of media files and playlists that get synchronized. The

<extensions> element contains the <library> and <playlists> elements, which list the extensions that

media files and playlists must have to be synchronized. Mediastore files with unlisted extensions don't

get synchronized.

Copyright © 2015, QNX Software Systems Limited54

Configuring Mediastore Synchronization

Filtering synchronization by file type

Client applications can filter the types of media files and playlists that get synchronized. The

<extensions> element contains the <library> and <playlists> elements, which list the extensions that

media files and playlists must have to be synchronized. Mediastore files with unlisted extensions don't

get synchronized.

Both of these contained elements are required, and must list all extensions supported for that content

type. This is done by defining an <extension> element for each supported file extension, within the

<library> or <playlists> element.

The contents of the <extensions> element are:

DescriptionDefaultAttributeTag name

Specifies which file extensions are used for playlists. For each

extension you want to support, define a separate <extension>
element.

<extensions>/<playlists>

Names the extension of a playlist type to synchronize. Typically,

the extension is a three- or four-letter abbreviation of the format,

(none)value<extensions>/<playlists>/
<extension>

although longer extensions are accepted. The matching ignores

case, so listing an extension of "m3u8" means playlists with the

extension "M3U8" will also be synchronized.

Specifies which file extensions are used for media files. For each

extension you want to support, define a separate <extension>
element.

<extensions>/<library>

Names the extension of a media file type to synchronize. Typically,

the extension is a three- or four-letter abbreviation of the format,

(none)value<extensions>/<library>/
<extension>

although longer extensions are accepted. The matching ignores

case, so listing an extension of "mpeg4" in the configuration file

means playlists with the extension "MPeg4" will also be

synchronized.

Names the default media type associated with the file extension.

Acceptable values are audio, video, and photo.

(none)ftype

The ftype may change during the metadata pass of

synchronization. For example, a file with an "mp4" extension can

be an audio or video file. The customer must configure the file

type to either audio or video to be used when mm-sync intially

parses the file's information during the files pass. However, the

ftype may change during the subsequent metadata pass if it's

determined that the actual file type differs from the specified

default type.

Copyright © 2015, QNX Software Systems Limited 55

Configuring Mediastore Synchronization

Suppose you want the database to hold photo metadata from compact bitmap (rasterized) file formats

(and no audio or video metadata). You would then put the following in your configuration file:

<extensions>

<library>

<extension value="png" ftype="photo" />

<extension value="jpg" ftype="photo" />

<extension value="jpeg" ftype="photo" />

<extension value="gif" ftype="photo" />

</library>

</extensions>

Only media files with one of these four listed extensions will have their metadata extracted and uploaded

to the database.

Related Links

Configuration file contents (p. 42)

The configuration file contains a hierarchy of XML elements that control all synchronization features.

Your own file must follow the prescribed structure so the synchronizer service can properly parse your

file, but you need to include only those elements that specify the properties you want to use.

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

Skipping files based on their names (p. 53)

The <SyncFileMask> element allows you to ignore files during synchronization based on a character

string in the filename (including the file extension).

Copyright © 2015, QNX Software Systems Limited56

Configuring Mediastore Synchronization

Prescanning for nonmedia items

To prevent mm-sync from spending too much time searching through nonmedia items, you can configure

parameters for the prescanning of folders. The prescanning determines which folders can be skipped

from synchronization because they don't contain much (or any) media content.

<NonMediaItems>

The <NonMediaItems> element contains the elements that define the prescan parameters. At most

one <NonMediaItems> tag may be specified in the configuration because this element controls the

prescanning of all folders on all mediastores.

<MaxItems>

This element specifies the number of nonmedia items allowed in a folder before mm-sync considers

it to be a system (i.e., nonmedia) folder and hence, doesn't synchronize its contents. Defining this

limit prevents mm-sync from searching through sections of mediastore filesystems that contain primarily

or exclusively nonmedia content.

By default, this tag is set to 0, which disables the limit on nonmedia items in a folder.

The consecutive attribute controls whether the nonmedia items must be consecutive within the folder

listings to count towards the total number of nonmedia items found. For example, if consecutive is

true and <MaxItems> is 50, then 50 consecutive nonmedia items must be found before mm-sync
stops synchronizing the folder. Any media item found before this nonmedia items limit is reached

causes the nonmedia items counter to be reset to 0.

Because the order of the folder listings is usually not guaranteed, enabling a consecutive limit can

produce nondeterministic results. Hence, the attribute's default setting is false.

<PrescanLimit>

You can limit how many items mm-sync examines when prescanning a folder. Setting the <PrescanLimit>
tag is useful for restricting the time spent reading a large folder (e.g., one with 20 000 items).

The default value is 0; this setting disables the limit on the items examined.

Prescan behavior

When enabled in the configuration, the prescan operation is done for each folder in the synchronization

path. The prescan behavior is:

• Scan a folder until the limit on the number of folder items (<PrescanLimit>) is reached. All

items—media and nonmedia—count towards this limit. If the corresponding tag is set to 0, keep

scanning until all the folder items have been examined or the limit of nonmedia items is reached.

• When a nonmedia item is found, increment the corresponding counter. If the limit on nonmedia

items (<MaxItems>) has been reached, stop examining the folder and don't synchronize it.

• If the consecutive attribute for this last tag is set to true, reset the counter of nonmedia items to

0 each time a media item is found.

• If the prescan finishes for a folder and the nonmedia item limit has not been exceeded, synchronize

the folder.

Copyright © 2015, QNX Software Systems Limited 57

Configuring Mediastore Synchronization

Related Links

Configuration file contents (p. 42)

The configuration file contains a hierarchy of XML elements that control all synchronization features.

Your own file must follow the prescribed structure so the synchronizer service can properly parse your

file, but you need to include only those elements that specify the properties you want to use.

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

Limiting the number of items read (p. 59)

You can limit the total number of items read from any folder or the entire mediastore. An excessively

large number of items can make using the device very slow and can cause poor response times for

synchronization operations such as changing priority folders or determining mediastore changes.

Mediastore filesystem traversal (p. 13)

At each synchronization pass, mm-sync traverses the mediastore filesystem to extract and upload media

information into the mediastore's database. The section of the filesystem tree that is synchronized

depends on the user-specified path. If a blank path is given and the recursive option is set, the entire

filesystem is synchronized. Otherwise, only the files and folders named by the path are synchronized.

Copyright © 2015, QNX Software Systems Limited58

Configuring Mediastore Synchronization

Limiting the number of items read

You can limit the total number of items read from any folder or the entire mediastore. An excessively

large number of items can make using the device very slow and can cause poor response times for

synchronization operations such as changing priority folders or determining mediastore changes.

<MaxFolderItems>

The <MaxFolderItems> element controls the maximum number of items read from a folder. The

configuration file can contain only one <MaxFolderItems> tag; its value will apply to every folder on

every mediastore. Currently, only the block filesystem (BFS) mediastore synchronizer (bfsrecurse) uses

the value in the <MaxFolderItems> element; other synchronizers ignore it. The default setting for

<MaxFolderItems> is 0, meaning there's no default limit on the number of items read from a folder.

To keep the count consistent, independently of the type of items in the folder and of their contents,

mm-sync calculates the number of items in a folder before performing any filtering based on the

<SyncFileMask> setting. Because “.” and “..” are always ignored, mm-sync compensates for these

files when it calculates the number of items in a folder. When a synchronization reaches the limit set

by <MaxFolderItems>, mm-sync stops synchronizing the folder and delivers the

MMSYNC_SYNC_ERROR_FOLDER_LIMIT event.

When you configure a limit on the number of items read from any one folder by setting

<MaxFolderItems> to a nonzero value, the filesystem readdir() operation determines which folder

items mm-sync sees. The mm-sync service doesn't see items beyond the <MaxFolderItems> limit and

doesn't consider them when checking for folder changes. These unseen items may include media files,

playlist files, other folders, and files that have been filtered out or that, by definition, mm-sync doesn't

handle (such as .xls files). Adding or deleting items from a folder on a mediastore affects the

presentation of the items to mm-sync (depending on the operation of the readdir() function) and may

cause unexpected changes to the database for the mediastore.

<MaxMediaStoreItemsConfiguration>

The <MaxMediaStoreItemsConfiguration> element and its contained <MaxMediaStoreItems> elements

control the maximum number of items read from mediastores. There can be only one

<MaxMediaStoreItemsConfiguration> element, but it can have multiple <MaxMediaStoreItems>
elements to set distinct limits on the number of items read for different mediastores. Each

<MaxMediaStoreItems> element must have a mediastore attribute set to the mediastore path and

the element value set to the limit on the number items to read. You can use wildcards in the mediastore

path. For example, the configuration element <MaxMediaStoreItems
mediastore="/fs/usb*">100</MaxMediaStoreItems> means the devices located at /fs/usb0 and /fs/usb1
both have a maximum of 100 items read.

Currently, only the following mediastore synchronizers use the values in the

<MaxMediaStoreItemsConfiguration> and <MaxMediaStoreItems> elements:

• audiocd

• bfsrecurse

During synchronization, mm-sync walks the device's directory structure, starting from the root folder

in the synchronization path. For each folder it examines, mm-sync first calculates the number of items,

Copyright © 2015, QNX Software Systems Limited 59

Configuring Mediastore Synchronization

ignoring the “.” and “..” filesystem entries, and then performs any filtering based on the <SyncFileMask>
setting.

If <MaxMediaStoreItems> is 0 for the mediastore being synchronized or if there's no element whose

mediastore attribute matches the path of the mediastore, mm-sync will read an unlimited number

of items from that device. If there's a matching path in a <MaxMediaStoreItems> element that has a

nonzero value, the synchronization process counts how many items have been read from all folders

traversed so far, and then increments this count for each item read, whether the item gets synchronized

or not. When the number of items read from the mediastore reaches the configured limit, mm-sync
delivers the MMSYNC_SYNC_ERROR_LIB_LIMIT event.

The mm-sync process doesn't see items beyond the <MaxMediaStoreItems> limit, meaning that some

content—media files, playlist files, folders, and filtered and unsupported files—may not be read and

hence may not be synchronized to the database for the mediastore.

Items synchronized vs. items read

The number of items synchronized will be at most equal to the limit on how many items can be read.

If you haven't specified a file mask to ignore certain files, then the number of items synchronized will

match the maximum number of items read.

If you have defined a file mask to skip files in the synchronization based on their names, then the

number of items synchronized will be equal to the limit on items read minus the number of items that

matched the file mask. For example, suppose you set <MaxFolderItems> to 100 and <SyncFileMask>
to "^\." (to ignore files beginning with “.”). If a mediastore folder contains 150 items and if 20 of the

first 100 items are files, subfolders, or playlists that match the file mask, then the number of items

synchronized for the folder will be 100 - 20 = 80. Again, mm-sync doesn't consider items beyond the

limit on the number of items read, so in this case, the last 50 folder items are never considered for

synchronization.

Related Links

Configuration file contents (p. 42)

The configuration file contains a hierarchy of XML elements that control all synchronization features.

Your own file must follow the prescribed structure so the synchronizer service can properly parse your

file, but you need to include only those elements that specify the properties you want to use.

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

Prescanning for nonmedia items (p. 57)

To prevent mm-sync from spending too much time searching through nonmedia items, you can configure

parameters for the prescanning of folders. The prescanning determines which folders can be skipped

from synchronization because they don't contain much (or any) media content.

Mediastore filesystem traversal (p. 13)

At each synchronization pass, mm-sync traverses the mediastore filesystem to extract and upload media

information into the mediastore's database. The section of the filesystem tree that is synchronized

depends on the user-specified path. If a blank path is given and the recursive option is set, the entire

filesystem is synchronized. Otherwise, only the files and folders named by the path are synchronized.

Copyright © 2015, QNX Software Systems Limited60

Configuring Mediastore Synchronization

Maintaining constant IDs for updated files and playlists

The <ChangedFilesHaveConstantId> element in the configuration file and the dynamic_folder

option in the command for starting a synchronization both force mm-sync to keep the same IDs in the

database for media and playlist files that have been modified.

By default, during the files pass of synchronization, mm-sync treats any media or playlist file whose

size or date has changed as new and synchronizes it accordingly, adding a table entry with a new file

ID. For new media files, it's a files table entry with a unique fid value. For new playlist files, it's a

playlists table entry with a unique plid value. When either the <ChangedFilesHaveConstantId>
configuration setting or the dynamic_folder option for a particular synchronization is enabled, the

files pass does not consider media files and playlists with changes in size or modification date as new,

but maintains their file IDs and sets their accurate fields to 0 to indicate that the file metadata might

have changed.

Thus, if you configure mm-sync to maintain constant file IDs for changed media or playlist files, you

must check a file's accurate field before you can use its metadata. If the accurate field is 0, then the

file requires a metadata or playlist synchronization pass.

This setting slows down the files pass of synchronization when the filesystem has changed, but is

necessary for legacy media applications that aren't designed to accommodate the file ID changing

when a file is modified.

For media files not successfully synchronized during the metadata pass or for playlist files not

successfully synchronized during the playlist pass, their accurate field will be set to 0,

regardless of the <ChangedFilesHaveConstantId> or dynamic_folder setting.

Playlist synchronization behavior

Playlist synchronization differs from media file synchronization in the following ways:

• The playlist pass ensures all playlists are synchronized, except for those already marked as accurate,

which are skipped from synchronization.

• For playlists marked as accurate, the playlist pass validates their entries against the corresponding

media files in the files table, checking if any files have been added or removed.

• If the media file referred to by a playlist entry has been modified, the playlist entry is marked as

not accurate; mm-sync will reparse that entry on the next playlist synchronization.

Related Links

Configuration file contents (p. 42)

The configuration file contains a hierarchy of XML elements that control all synchronization features.

Your own file must follow the prescribed structure so the synchronizer service can properly parse your

file, but you need to include only those elements that specify the properties you want to use.

The <Configuration>/<Database>/<Synchronization> element (p. 43)

The <Configuration>/<Database>/<Synchronization> element defines the settings that control

synchronization, including the optimization of system resources, the file types to include or exclude,

the mapping of metadata provider fields to database fields, and policies for media data and playlists.

Copyright © 2015, QNX Software Systems Limited 61

Configuring Mediastore Synchronization

Chapter 5
Multimedia Synchronizer API

The multimedia synchronizer API exposes the constants, data types, and functions that client

applications can use to start synchronizing media content, monitor synchronization progress, and

interpret any errors reported by the mm-sync service.

The API consists of five sections:

Client interface

Defines the flags, data types, and functions for managing mm-sync connections and for

controlling and monitoring synchronizations.

Configuration constants

Specify values used to configure synchronization operations.

Media file categories

Support a mapping of the media file type to the database tables written during

synchronization and also allow for filtering query results by file type.

Event interface

Defines functions for processing mm-sync events as well as data types for listing the event

types and storing the data of specific event types.

Error information

Includes a listing of error types and a structure that holds information about individual

errors.

Copyright © 2015, QNX Software Systems Limited 63

Client interface

The mm-sync service provides a client interface that allows applications to connect to the service, start

and monitor synchronizations, and set debugging levels.

The client interface defines functions for synchronizing specific media content on a device and for

suspending, cancelling, or resuming a synchronization. This API section also defines synchronization

option flags and data types used as function parameters.

Before you can synchronize any content, you must connect to mm-sync by calling mm_sync_connect().

This function returns a connection handle (as an mmsync_hdl_t value) that must be used in subsequent

API calls to refer to the same connection. For example, you can start synchronizations by calling

mm_sync_start(), passing in that connection handle along with the mountpoint of the device and the

path containing the content that you want to synchronize.

When you're finished synchronizing media content, you can disconnect from mm-sync by calling

mm_sync_disconnect().

There's also a function for setting the debugging and verbosity levels (mm_sync_debug_set()) so you

can see useful troubleshooting information in the stderr file stream and sloginfo logging utility.

Copyright © 2015, QNX Software Systems Limited64

Multimedia Synchronizer API

Client interface constants

Constants for enabling synchronization options, making some function calls blocking, and limiting

debugging levels that can be set by clients

Flags for enabling synchronization options:

Synopsis:

#include <mmsync/interface.h>

Defines:

#define MMSYNC_OPTION_PASS_FILES (0x00000001)

Perform files pass of synchronization.

#define MMSYNC_OPTION_PASS_METADATA (0x00000002)

Perform metadata pass of synchronization.

#define MMSYNC_OPTION_PASS_PLAYLISTS (0x00000004)

Perform playlist pass of synchronization.

#define MMSYNC_OPTION_PASS_ALL (MMSYNC_OPTION_PASS_FILES + \
MMSYNC_OPTION_PASS_METADATA + \ MMSYNC_OPTION_PASS_PLAYLISTS)

Perform all three passes of synchronization.

#define MMSYNC_OPTION_REPAIR (0x00000400)

Repair database inconsistencies in folder information.

#define MMSYNC_OPTION_VERIFY (0x00000800)

Verify data consistency in folder information.

#define MMSYNC_OPTION_CANCEL_CURRENT (0x00002000)

Cancel any ongoing synchronization when a new one is started.

#define MMSYNC_OPTION_RECURSIVE (0x00004000)

Synchronize contents of subfolders within the folder named in the path.

#define MMSYNC_OPTION_SKIPNONMEDIACHECK (0x00010000)

Skip check of nonmedia files.

Debugging flags

Synopsis:

#include <mmsync/interface.h>

Defines:

Copyright © 2015, QNX Software Systems Limited 65

Multimedia Synchronizer API

#define MMSYNC_DEBUG_LOG_EMIT_TO_STDERR (0x01)

Indicates log messages are sent to stderr (in addition to slog).

Controls for blocking on function calls and for limiting verbosity and debugging:

Synopsis:

#include <mmsync/mmsyncclient.h>

Defines:

#define MM_SYNC_SUSPEND_FLAGS_WAIT 0x00000001

Force mm_sync_suspend() to block until synchronization thread is suspended.

#define MMSYNC_MAX_VERBOSE 10

Restrict verbosity setting for mm_sync_debug_set() to maximum of 10.

#define MMSYNC_MAX_DEBUG 0xff

Allow unlimited debugging setting for mm_sync_debug_set().

Flag for indicating synchronization thread suspension:

Synopsis:

#include <mmsync/types.h>

Defines:

#define MM_SYNC_THREAD_IS_SUSPENDED 0x00000001

Indicate current synchronization operation has a suspended thread.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited66

Multimedia Synchronizer API

mm_sync_cancel()

Cancel a synchronization

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_cancel(mmsync_hdl_t *hdl,

unsigned op_id,

uint32_t flags)

Arguments:

hdl

The mm-sync connection handle pointer.

op_id

The operation ID of the synchronization to cancel.

flags

Reserved for future use, must be 0.

Library:
mmsyncclient

Description:

Cancel a synchronization. You can do this if a device is no longer of interest or if playback is requested

from a device that's being synchronized and that has problems with simultaneous playback and

synchronization.

Returns:

0 on success, -1 on failure.

Related Links

mm_sync_control() (p. 69)

Send commands to a synchronization in progress

mm_sync_resume() (p. 74)

Resume a suspended synchronization

mm_sync_start() (p. 75)

Start a synchronization

mm_sync_suspend() (p. 84)

Suspend a synchronization

Copyright © 2015, QNX Software Systems Limited 67

Multimedia Synchronizer API

mm_sync_connect()

Connect to mm-sync and obtain a handle

Synopsis:

#include <mmsync/mmsyncclient.h>

mmsync_hdl_t* mm_sync_connect(const char *filename,

uint32_t flags)

Arguments:

filename

The path to the mm-sync device name.

flags

Reserved for future use, must be 0.

Library:
mmsyncclient

Description:

Connect to mm-sync and obtain a handle. The filename argument must contain the path of the device

object used for synchronizations. The default device is /dev/mmsync, but the path you provide to this

function must match what you gave to mm-sync at startup.

Returns:

An mm-sync connection handle on success, NULL on failure.

Related Links

mm_sync_disconnect() (p. 73)

Disconnect from mm-sync

Copyright © 2015, QNX Software Systems Limited68

Multimedia Synchronizer API

mm_sync_control()

Send commands to a synchronization in progress

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_control(mmsync_hdl_t *hdl,

uint32_t op_id,

strm_dict_t *extended_options,

uint32_t flags)

Arguments:

hdl

The mm-sync connection handle pointer.

op_id

The operation ID of the synchronization being controlled.

extended_options

A set of key/value pairs containing synchronization control commands, formatted as follows:

key1=value1,key2=value2,key3=value3,...

DescriptionValueKey

The action to perform on the synchronization.Currently, only one action

is supported:

priority_folder_set

action

The folder the action is performed on. Either this

field or folder_path must be defined for actions

An integer storing the ID

of a mediastore folder.

folderid

such as priority_folder_set that affect a

particular folder.

The folder the action is performed on. Either this

field or folderid must be defined for actions such

A string storing the path

of a mediastore folder.

folder_path

as priority_folder_set that affect a

particular folder.

The path is relative to the

mediastore's filesystem

(e.g., “/” refers to the

mediastore's root folder).

Enable or disable the dynamic setting for the

folder referred to by folderid or folder_path . This

enable | disabledynamic_

folder

option applies to the priority_folder_set

action.

Copyright © 2015, QNX Software Systems Limited 69

Multimedia Synchronizer API

DescriptionValueKey

When this setting is enabled, the fids for files

in this folder will remain constant. The setting

is nonrecursive, so the only files affected are

those in the top-level folder in the

synchronization path named in the operation

op_id ; files in subfolders aren't affected.

For information on how this setting impacts

synchronization, see “Maintaining constant IDs

for updated files and playlists (p. 61)”.

DescriptionAction

Initiates a priority folder synchronization. Requires one of the

folderid and folder_path key/value pairs. You can also define the

priority_folder_set

dynamic_folder key to enable or disable the dynamic folder

setting.

flags

Reserved for future use, must be 0.

Library:
mmsyncclient

Description:

Send commands to a synchronization in progress. Currently, the only command supported is

priority_folder_set, which initiates a priority folder synchronization.

Returns:

0 on success, -1 on failure.

Related Links

mm_sync_cancel() (p. 67)

Cancel a synchronization

mm_sync_resume() (p. 74)

Resume a suspended synchronization

mm_sync_start() (p. 75)

Start a synchronization

mm_sync_suspend() (p. 84)

Suspend a synchronization

Copyright © 2015, QNX Software Systems Limited70

Multimedia Synchronizer API

mm_sync_debug_get()

Get the logging verbosity level and debugging flags

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_debug_get(mmsync_hdl_t *hdl,

uint8_t *verbose,

uint8_t *debug)

Arguments:

hdl

The mm-sync connection handle pointer.

verbose

A pointer to the storage for the verbosity level.

debug

A pointer to the storage for the debugging flags.

Library:
mmsyncclient

Returns:

0 on success, -1 on failure.

Copyright © 2015, QNX Software Systems Limited 71

Multimedia Synchronizer API

mm_sync_debug_set()

Set the logging verbosity level and debugging flags

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_debug_set(mmsync_hdl_t *hdl,

uint8_t verbose,

uint8_t debug)

Arguments:

hdl

The mm-sync connection handle pointer.

verbose

The new verbosity level.

debug

The new debugging flags (as a bitfield of MMSYNC_DEBUG_* constants). This setting

overrides the previous flags.

Library:
mmsyncclient

Description:

Set the logging verbosity level and debugging flags. These settings can be between 0 (to turn off the

feature) and the maximum limits defined by MMSYNC_MAX_VERBOSE and MMSYNC_MAX_DEBUG.

Values higher than these limits cause the function to fail.

Returns:

0 on success, -1 on failure.

Copyright © 2015, QNX Software Systems Limited72

Multimedia Synchronizer API

mm_sync_disconnect()

Disconnect from mm-sync

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_disconnect(mmsync_hdl_t *hdl)

Arguments:

hdl

The mm-sync connection handle pointer.

Library:
mmsyncclient

Description:

Disconnect from mm-sync. After calling this function, don't use the mm-sync connection handle.

Returns:

0 on success, -1 on failure (i.e., some resources couldn't be fully released).

Related Links

mm_sync_connect() (p. 68)

Connect to mm-sync and obtain a handle

Copyright © 2015, QNX Software Systems Limited 73

Multimedia Synchronizer API

mm_sync_resume()

Resume a suspended synchronization

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_resume(mmsync_hdl_t *hdl,

unsigned op_id,

uint32_t flags)

Arguments:

hdl

The mm-sync connection handle pointer.

op_id

The operation ID of the suspended synchronization to resume.

flags

Reserved for future use, must be 0.

Library:
mmsyncclient

Returns:

0 on success, -1 on failure.

Related Links

mm_sync_cancel() (p. 67)

Cancel a synchronization

mm_sync_control() (p. 69)

Send commands to a synchronization in progress

mm_sync_start() (p. 75)

Start a synchronization

mm_sync_suspend() (p. 84)

Suspend a synchronization

Copyright © 2015, QNX Software Systems Limited74

Multimedia Synchronizer API

mm_sync_start()

Start a synchronization

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_start(mmsync_hdl_t *hdl,

const char *db,

const char *mountpoint,

const char *syncpath,

uint32_t options,

const strm_dict_t *extended_options)

Arguments:

hdl

The mm-sync connection handle pointer.

db

The device path of the database to store the synchronized content.

mountpoint

The mountpoint of the mediastore to synchronize.

syncpath

The relative path on the mediastore of the files or folders to synchronize.

options

The following synchronization options apply:

MMSYNC_OPTION_PASS_FILES

Perform the files pass.

MMSYNC_OPTION_PASS_METADATA

Perform the metadata pass.

MMSYNC_OPTION_PASS_PLAYLISTS

Perform the playlist pass.

MMSYNC_OPTION_PASS_ALL

Perform all three passes.

MMSYNC_OPTION_CANCEL_CURRENT

Cancel any synchronization in progress on the device before starting the new

synchronization.

Copyright © 2015, QNX Software Systems Limited 75

Multimedia Synchronizer API

MMSYNC_OPTION_RECURSIVE

After synchronizing the root folder in the specified path, synchronize its subfolders.

extended_options

A set of key/value pairs containing extended synchronization options, formatted as follows:

key1=value1,key2=value2,key3=value3,...

This parameter can be NULL.

DescriptionValueKey

Use the specified synchronizer if it supports the current

operation; otherwise, do nothing.

“mss_name” (a supported

synchronizer, as a string in quotes;

e.g., "dvdaudio")

use_synchronizer

Force the use of the specified synchronizer, whether or

not it supports the current operation.

“mss_name” (a supported

synchronizer, as a string in quotes;

e.g., "dvdvideo")

force_synchronizer

Enable or disable the dynamic setting for the folder

specified in syncpath . The fids for files in this folder will

enable | disabledynamic_folder

remain constant while this setting is enabled. The setting

is nonrecursive, so the only files affected are those in the

top-level folder given in syncpath ; files in subfolders

aren't affected.

For information on how this setting impacts

synchronization, see “Maintaining constant IDs for

updated files and playlists (p. 61)”.

Retrieve only the listed metadata fields. This setting

affects only directed synchronizations in which

dynamic_folder is enabled.

The metadata fields to be read, as

name-value pairs separated by

semi-colons:

metadata_keys

md_title_name=Poltergeist;

md_title_genre=Horror;

md_title_album=

UnleashTheDemons;

md_title_artist=Mr_X

When you define metadata_keys, the libmd library isn't

used for metadata extraction; instead, mm-sync sets the

metadata fields to the values listed in this option. Note

that you must provide values for each field that you list.

Library:
mmsyncclient

Description:

Start synchronizing the media content contained in syncpath . This path is relative within the filesystem

of the mediastore located at mountpoint . The media content is synchronized to the database with the

device path in db . The mm-sync process synchronizes content in a dedicated thread, so this function

call returns before the synchronization starts.

Copyright © 2015, QNX Software Systems Limited76

Multimedia Synchronizer API

All path arguments must contain valid locations in a locally accessible filesystem. The syncpath

argument is flexible, allowing you to specify these scopes:

• the entire mediastore

• a section of the mediastore filesystem, based on a root folder

• an individual file, which may be a media file (i.e., a track) or a playlist

When the synchronization path refers to a folder, you must terminate it with a slash (/). To make

mm-sync look in subfolders, set the MMSYNC_OPTION_RECURSIVE flag in options . When the path

is an individual file, you must set both the MMSYNC_OPTION_PASS_FILES and

MMSYNC_OPTION_PASS_METADATA flags for media files and set the

MMSYNC_OPTION_PASS_PLAYLISTS flag for playlists.

Some mediastores don't support synchronizations of specific folders or files. For these mediastores,

you must synchronize all their content by specifying a path of "/".

Returns:

Values greater than 0 refer to the synchronization operation ID, on success. -1 is returned on failure.

Related Links

Full, directed, and file synchronizations (p. 17)

The multimedia synchronizer doesn't provide separate controls for synchronizing an entire mediastore

versus certain folders or files. You use the same function call to synchronize content whether it's a

full, recursive synchronization of all the mediastore content or of only a folder, file, or playlist.

Synchronizer selection (p. 10)

The mm-sync service provides many synchronizers designed for various media and storage devices.

Some synchronizers can extract the metadata from a certain device, media type, or playlist better than

other synchronizers. When mm-sync receives a synchronization request, it selects the best synchronizer

to use for the content being synchronized and for the device and media type.

mm_sync_cancel() (p. 67)

Cancel a synchronization

mm_sync_control() (p. 69)

Send commands to a synchronization in progress

mm_sync_resume() (p. 74)

Resume a suspended synchronization

mm_sync_suspend() (p. 84)

Suspend a synchronization

Copyright © 2015, QNX Software Systems Limited 77

Multimedia Synchronizer API

mm_sync_status_get()

Get the statuses of active synchronizations

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_status_get(mmsync_hdl_t *hdl,

mmsync_status_t *status,

size_t max_num_status,

uint32_t flags)

Arguments:

hdl

The mm-sync connection handle pointer.

status

A pointer to an array of structures to hold the statuses.

max_num_status

The array size.

flags

Reserved for future use, must be 0.

Library:
mmsyncclient

Description:

Get the statuses of active synchronizations, including those started before your application connected

to mm-sync.

This function writes the statuses of individual synchronizations into separate mmsync_status_t structures.

Note that max_num_status is the maximum number of structures that mm-sync will write to, not the

size of the mmsync_status_t data type. So, you must provide a buffer of sizeof(mmsync_status_t)

* max_num_status bytes in status .

If you want to get information about all active synchronizations, you can first call mm_sync_status_get()

with max_num_status to 0 and status to NULL. The function will return the total number of

synchronizations in progress or pending, which you can use to calculate the amount of buffer space

needed. You can then call this function again and mm-sync will write the statuses of all synchronizations

into the sufficiently large buffer.

Copyright © 2015, QNX Software Systems Limited78

Multimedia Synchronizer API

Returns:

On success, a value greater than 0 indicating the number of synchronizations in progress or pending.

This value may be greater than max_num_status but only the minimum of this return value or

max_num_status statuses are available. On failure, -1 is returned.

Related Links

mmsync_status_t (p. 86)

The synchronization status of a single mediastore

mm_sync_status_get_bydbname() (p. 80)

Get the status of a synchronization based on the database name

mm_sync_status_get_byid() (p. 81)

Get the status of a synchronization based on the operation ID

mm_sync_status_get_dbname() (p. 82)

Get the name of the database used in a specific synchronization

Copyright © 2015, QNX Software Systems Limited 79

Multimedia Synchronizer API

mm_sync_status_get_bydbname()

Get the status of a synchronization based on the database name

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_status_get_bydbname(mmsync_hdl_t *hdl,

mmsync_status_t *status,

const char *dbname,

uint32_t flags)

Arguments:

hdl

The mm-sync connection handle pointer.

status

A structure to store the status in.

dbname

The name of the database for which the status is being retrieved.

flags

Reserved for future use, must be 0.

Library:
mmsyncclient

Returns:

On success, a value greater than 0 indicating the number of results. When no database with the given

name is found, the function returns 0 because there are no results; this isn't considered an error case.

On failure, -1 is returned.

Related Links

mmsync_status_t (p. 86)

The synchronization status of a single mediastore

mm_sync_status_get() (p. 78)

Get the statuses of active synchronizations

mm_sync_status_get_byid() (p. 81)

Get the status of a synchronization based on the operation ID

mm_sync_status_get_dbname() (p. 82)

Get the name of the database used in a specific synchronization

Copyright © 2015, QNX Software Systems Limited80

Multimedia Synchronizer API

mm_sync_status_get_byid()

Get the status of a synchronization based on the operation ID

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_status_get_byid(mmsync_hdl_t *hdl,

mmsync_status_t *status,

uint32_t id,

uint32_t flags)

Arguments:

hdl

The mm-sync connection handle pointer.

status

A structure to store the status in.

id

The operation ID of the synchronization for which the status is being retrieved.

flags

Reserved for future use, must be 0.

Library:
mmsyncclient

Returns:

On success, a value greater than 0 indicating the number of results. When no synchronization with

the given operation ID is found, the function returns 0 because there are no results; this isn't considered

an error case. On failure, -1 is returned.

Related Links

mmsync_status_t (p. 86)

The synchronization status of a single mediastore

mm_sync_status_get() (p. 78)

Get the statuses of active synchronizations

mm_sync_status_get_bydbname() (p. 80)

Get the status of a synchronization based on the database name

mm_sync_status_get_dbname() (p. 82)

Get the name of the database used in a specific synchronization

Copyright © 2015, QNX Software Systems Limited 81

Multimedia Synchronizer API

mm_sync_status_get_dbname()

Get the name of the database used in a specific synchronization

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_status_get_dbname(mmsync_hdl_t *hdl,

uint32_t id,

char *dbname,

size_t dbname_sz,

uint32_t flags)

Arguments:

hdl

The mm-sync connection handle pointer.

id

The operation ID of the synchronization for which the database name is being retrieved.

dbname

A buffer to store the database name.

dbname_sz

The buffer size.

flags

Reserved for future use, must be 0.

Library:
mmsyncclient

Description:

Get the name of the database used in the synchronization with the operation ID matching id . The

database name is copied into the dbname buffer, with at most dbname_sz bytes being written. If

there's no active synchronization with this operation ID (e.g., the synchronization has already finished),

nothing is written to the buffer.

If you need to know how much memory to allocate for the buffer, call mm_sync_status_get_dbname()

with dbname set to NULL and dbname_sz set to 0. The function then returns the number of bytes

needed to store the database name.

Returns:

On success, the required buffer size for storing the database name. On failure, -1 is returned.

Copyright © 2015, QNX Software Systems Limited82

Multimedia Synchronizer API

Related Links

mm_sync_status_get() (p. 78)

Get the statuses of active synchronizations

mm_sync_status_get_bydbname() (p. 80)

Get the status of a synchronization based on the database name

mm_sync_status_get_byid() (p. 81)

Get the status of a synchronization based on the operation ID

Copyright © 2015, QNX Software Systems Limited 83

Multimedia Synchronizer API

mm_sync_suspend()

Suspend a synchronization

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_suspend(mmsync_hdl_t *hdl,

unsigned op_id,

uint32_t flags)

Arguments:

hdl

The mm-sync connection handle pointer.

op_id

The operation ID of the synchronization to suspend.

flags

Use MM_SYNC_SUSPEND_FLAGS_WAIT to block until the synchronization thread has been

suspended.

Library:
mmsyncclient

Description:

Suspend a synchronization. You can do this to relieve contention on a device for a temporary purpose,

such as accessing a file or starting playback quickly. This differs from cancelling a synchronization,

which can be done if it's no longer needed or it begins to negatively impact performance.

Returns:

0 on success, -1 on failure.

Related Links

mm_sync_cancel() (p. 67)

Cancel a synchronization

mm_sync_control() (p. 69)

Send commands to a synchronization in progress

mm_sync_resume() (p. 74)

Resume a suspended synchronization

mm_sync_start() (p. 75)

Start a synchronization

Copyright © 2015, QNX Software Systems Limited84

Multimedia Synchronizer API

mmsync_hdl_t

The mm-sync connection handle type

Synopsis:

#include <mmsync/types.h>

typedef struct _mmsync_hdl mmsync_hdl_t;

Library:
mmsyncclient

Description:

The mmsync_hdl_t structure is a private data type representing an mm-sync connection handle.

The mm_sync_connect() function returns a connection handle when a connection was successfully

established. Your application must use this handle to access the same connection in all synchronization

management API calls. After calling mm_sync_disconnect() to terminate the connection, you must not

use the handle anymore.

Related Links

mm_sync_connect() (p. 68)

Connect to mm-sync and obtain a handle

mm_sync_disconnect() (p. 73)

Disconnect from mm-sync

Copyright © 2015, QNX Software Systems Limited 85

Multimedia Synchronizer API

mmsync_status_t

The synchronization status of a single mediastore

Synopsis:

#include <mmsync/types.h>

typedef struct s_mmsync_status {

uint32_t operation_id;

uint16_t passes_done;

uint16_t current_pass;

uint16_t passes_to_do;

uint16_t reserved[1];

uint32_t flags;

} mmsync_status_t;

Data:

uint32_t operation_id

The synchronization operation ID.

uint16_t passes_done

Flags indicating which synchronization passes have been completed.

uint16_t current_pass

Flag indicating which pass, if any, is in progress.

uint16_t passes_to_do

Flags indicating the synchronization passes that have not yet been started.

uint16_t reserved

Packing element.

uint32_t flags

Operation status flags (currently, only MM_SYNC_THREAD_IS_SUSPENDED is supported).

Library:
mmsyncclient

Description:

The synchronization status of a single mediastore.

Copyright © 2015, QNX Software Systems Limited86

Multimedia Synchronizer API

For the mm_sync_status_get_bydbname() and mm_sync_status_get_byid() functions, you must provide

one mmsync_status_t object as an input/output argument, to give these functions a space to write the

status results.

For mm_sync_status_get(), you must pass in an array of mmsync_status_t objects as well as the array

size in the function call, because this function returns the status of all active synchronizations (or as

many statuses as can be stored in the array).

Related Links

mm_sync_status_get() (p. 78)

Get the statuses of active synchronizations

mm_sync_status_get_bydbname() (p. 80)

Get the status of a synchronization based on the database name

mm_sync_status_get_byid() (p. 81)

Get the status of a synchronization based on the operation ID

Copyright © 2015, QNX Software Systems Limited 87

Multimedia Synchronizer API

Configuration settings

The configuration settings define values used by mm-sync in controlling synchronization threads,

reporting events, managing databases, limiting which media files get synchronized, and applying

policies to certain components.

Copyright © 2015, QNX Software Systems Limited88

Multimedia Synchronizer API

Configuration constants

Constants for defining mm-sync configuration values

Synopsis:

#include <mmsync/config.h>

General configuration settings:

#define CONF_DFLT_DEVICE_PATH "/dev/mmsync"

Default device path of mm-sync resource manager. All control contexts are created under

this path.

#define CONF_DFLT_VERBOSITY_LEVEL 2

Default verbosity level for mm-sync initialization log messages.

Event settings:

#define CONF_NTFY_QUEUE_MAX (80)

Maximum number of event notifications that can be queued at a time.

#define CONF_DFLT_SYNC_FOLDER_EVENTS 2

Default emission control of folder synchronization events, which is trimonly.

#define CONF_EVENT_NUM_PL_ENTRIES_SYNC (0)

Number of playlist entries that can be updated before the

MMSYNC_EVENT_PLAYLIST_ENTRIES_UPDATE event is sent.

#define CONF_DFLT_SYNC_MAX_FIRST_FID (1)

Default maximum number of MS_SYNC_FIRST_EXISTING_FID events sent during

synchronization.

Thread resource management settings:

#define CONF_DFLT_SYNC_BUFFER (250)

Default maximum number of synchronization records that can be stored in buffers shared

between foreground and background synchronization threads.

#define CONF_DFLT_SYNC_THREADS_MAX (8)

Default maximum number of foreground synchronization threads permitted to run at a time.

#define CONF_DFLT_SYNC_THREAD_PRIORITY 0

Default synchronization thread priority (0 means priority is inherited from main mm-sync
thread).

Copyright © 2015, QNX Software Systems Limited 89

Multimedia Synchronizer API

#define CONF_DFLT_MERGE_THREAD_PRIORITY_ADJ 1

Default priority adjustment for merge thread. This value is added to the original

synchronization thread priority, so it's a relative value.

Limits on files that get synchronized:

#define CONF_DFLT_SYNC_MAX_RECURSE (8)

Default maximum directory depth to recursively visit when synchronizing a mediastore. This

setting also applies to priority folders.

#define CONF_MAX_MAXMEDIASTOREITEMS (100)

Maximum number of distinct mediastores for which you can define a limit on the number

of media items read. This setting basically restricts how many <MaxMediaStoreItems> tags

will be read from the configuration file.

#define CONF_DFLT_MEDIAITEMS_MAXITEMS (0)

Default maximum number of media items that can be synchronized in a folder before

mm-sync skips the remaining items and moves onto another folder. This limit excludes “.”

and “..” filesystem entries but includes any items whose filenames match the name pattern

for files to skip from synchronization (which is specified in the <SyncFileMask> tag).

Here, media items refers to media files as defined in the configuration file. Individual tracks,

playlists, and folders can be considered media items.

When this setting is 0, all media items in a folder get synchronized. If the number of folder

entries is greater than this configured limit, the subset of items that gets synchronized

depends on the system.

#define CONF_DFLT_NONMEDIAITEMS_MAXITEMS (0)

Default maximum number of nonmedia items allowed in a folder before the folder is

determined to not contain media items (0 means unlimited).

#define CONF_DFLT_NONMEDIAITEMS_PRESCANLIMIT (0)

Default maximum number of items to examine in a folder when prescanning for nonmedia

content. All items—media and nonmedia—count towards the prescan limit.

When this setting is 0, mm-sync keeps scanning the folder until all of its items have been

examined or the limit of nonmedia items is reached.

#define CONF_DFLT_MEDIAITEMS_SIZEMIN (0)

Minimum size that a discovered file must have to be treated as a new media file during

synchronization (0 means any size).

Playlist limits

#define CONF_MAX_PLAYLIST_LINES 5000

Maximum number of lines that can be read from a playlist file. Each line names one playlist

entry, so this setting limits the allowable playlist length. This value is used by some playlist

session synchronizers (PLSSes).

Copyright © 2015, QNX Software Systems Limited90

Multimedia Synchronizer API

Limits on lengths of string parameters:

#define CONF_MAX_PATH 4000

Maximum allowable length of any filename (including its path) given as a synchronization

parameter.

#define CONF_MAX_SQL 8000

Maximum size of any message sent to the database resource manager; the message could

be an SQL statement or something else.

#define CONF_MAX_EXT_LEN (30)

Maximum length of a file extension that can be specified in a filename given to mm-sync.

#define CONF_MAX_EXTS 200

Maximum number of distinct file extensions that can be synchronized. This setting is applied

separately for the extensions of media files and the extensions of playlists.

#define CONF_MAX_MS_NAME_LEN (128)

Maximum allowable length for a volume name referring to an attached mediastore. The

length of the volume name passed into mm-sync by the client can't exceed this configured

limit; otherwise, the synchronization fails.

#define CONF_MAX_MSSNAME_LEN (20)

Maximum length of a mediastore synchronizer name that can be given in extended options

to mm_sync_start().

Database settings:

#define CONF_DFLT_MAX_DATABASE_SIZE 0

Default maximum size for the database, in kilobytes. If the database exceeds this size, the

synchronization aborts. A size of 0 means no limit on the database size.

#define CONF_DFLT_SYNC_INTERVAL 0

Number of files to synchronize before checking the database size. Larger values mean faster

synchronizations but also that the maximum database size can be exceeded by a greater

margin before the synchronization aborts. If this setting is 0, mm-sync doesn't check the

database size during synchronization.

#define CONF_DFLT_DATABASE_TIMEOUT_MS (0)

Default timeout value for database accesses, in milliseconds.

#define CONF_UTF8_CHAR_SIZE (4)

Number of characters used in specifying maximum string lengths for metadata. This value

is used for copying metadata to the database.

#define CONF_MAX_METADATA_CHARS (256)

Size limit of metadata strings written to the database. This limit is the number of characters

in the metadata strings copied from metadata providers into database fields.

Copyright © 2015, QNX Software Systems Limited 91

Multimedia Synchronizer API

#define CONF_DFLT_TYPE_CHARS (1)

Default type to use for truncating the metadata. The type can be either characters (the

default) or bytes.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited92

Multimedia Synchronizer API

Media file categories

The media file categories provide metadata that mm-sync uses to determine which database tables

and fields to populate based on a media file's extension. In the API, you can use these categories to

filter database query results based on file contents (i.e., audio, video, or image data).

Copyright © 2015, QNX Software Systems Limited 93

Multimedia Synchronizer API

mm_ftypes_t

Media file categories

Synopsis:

#include <mmsync/interface.h>

typedef enum mm_ftypes_e {

FTYPE_UNKNOWN = 0,

FTYPE_AUDIO = 1,

FTYPE_VIDEO = 2,

FTYPE_RESERVED1 = 3,

FTYPE_PHOTO = 4,

FTYPE_DEVICE = 5,

FTYPE_MAX

} mm_ftypes_t;

Data:

FTYPE_UNKNOWN

Unknown media file category.

FTYPE_AUDIO

Audio file.

FTYPE_VIDEO

Video file.

FTYPE_RESERVED1

Reserved for future use.

FTYPE_PHOTO

Photo file.

FTYPE_DEVICE

POSIX filesystem device.

FTYPE_MAX

End-of-list identifier.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited94

Multimedia Synchronizer API

Event interface

The mm-sync API defines general event categories and specific event types as well as structures for

holding information returned for particular event types. This information can include the synchronization

operation ID, timestamps, and details on the database file entries that were added or modified.

All events have an associated mmsync_event_t structure, which is returned by mm_sync_events_get().

The mmsync_event_t structure contains the event type, its size, and a field to access additional data.

The data field points to the contents of another structure that holds extra information specific to the

event's type.

Copyright © 2015, QNX Software Systems Limited 95

Multimedia Synchronizer API

mm_sync_events_get()

Get the next queued mm-sync event

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_events_get(mmsync_hdl_t *hdl,

mmsync_event_t **mmsync_event)

Arguments:

hdl

The mm-sync connection handle pointer.

mmsync_event

A pointer to the event.

Library:
mmsyncclient

Description:

Get the next queued mm-sync event. The event returned is stored in the mmsync_hdl_t object passed

into the function. The client must not delete this event by passing it to free(). When

mm_sync_events_get() is called on an mmsync_hdl_t object, it invalidates the previous mmsync_event_t
returned. Clients that want to keep the old event should copy it before calling mm_sync_events_get()

a second time.

Returns:

0 on success, -1 on failure.

Related Links

mm_sync_events_register() (p. 97)

Register or unregister for mm-sync event notifications

Copyright © 2015, QNX Software Systems Limited96

Multimedia Synchronizer API

mm_sync_events_register()

Register or unregister for mm-sync event notifications

Synopsis:

#include <mmsync/mmsyncclient.h>

int mm_sync_events_register(mmsync_hdl_t *hdl,

struct sigevent *event)

Arguments:

hdl

The mm-sync connection handle pointer.

event

The event to deliver when an mm-sync event is received; set to NULL to unregister.

Library:
mmsyncclient

Description:

Register or unregister for mm-sync event notifications. When a synchronization is active, it sends events

indicating its progress. These events include the synchronization start, errors, updates, pass completions,

and the synchronization finish.

Returns:

0 on success, -1 on failure.

Related Links

mm_sync_events_get() (p. 96)

Get the next queued mm-sync event

Copyright © 2015, QNX Software Systems Limited 97

Multimedia Synchronizer API

mmsync_event_queue_size_t

Data for MMSYNC_EVENT_BUFFER_TOO_SMALL event

Synopsis:

#include <mmsync/event.h>

typedef struct s_mmsync_event_queue_size {

size_t first_event;

size_t all_events;

} mmsync_event_queue_size_t;

Data:

size_t first_event

The size (in bytes) of the first queued event.

size_t all_events

The total size (in bytes) of all queued events.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited98

Multimedia Synchronizer API

mmsync_event_t

General information provided for all events

Synopsis:

#include <mmsync/event.h>

typedef struct _mmsync_event {

mmsync_event_type_t type;

size_t size;

char data[0];

} mmsync_event_t;

Data:

mmsync_event_type_t type

The event type, as an MMSYNC_EVENT_* constant.

size_t size

The event data size.

char data

The event data.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited 99

Multimedia Synchronizer API

mmsync_event_type_t

mm-sync event types

Synopsis:

#include <mmsync/event.h>

typedef enum mmsync_event_type {

MMSYNC_EVENT_NONE = 0,

MMSYNC_EVENT_MS_1PASSCOMPLETE,

MMSYNC_EVENT_MS_SYNCCOMPLETE,

MMSYNC_EVENT_MS_UPDATE,

MMSYNC_EVENT_SHUTDOWN,

MMSYNC_EVENT_SHUTDOWN_COMPLETED,

MMSYNC_EVENT_MS_SYNCFIRSTFID,

MMSYNC_EVENT_SYNC_ERROR,

MMSYNC_EVENT_SYNCABORTED,

MMSYNC_EVENT_SYNC_SKIPPED,

MMSYNC_EVENT_MS_SYNC_STARTED,

MMSYNC_EVENT_MS_2PASSCOMPLETE,

MMSYNC_EVENT_MS_3PASSCOMPLETE,

MMSYNC_EVENT_MS_SYNC_PENDING,

MMSYNC_EVENT_MS_SYNC_FOLDER_STARTED,

MMSYNC_EVENT_MS_SYNC_FOLDER_COMPLETE,

MMSYNC_EVENT_MS_SYNC_PRIORITY_FOLDER_STARTED,

MMSYNC_EVENT_MS_SYNC_PRIORITY_FOLDER_COMPLETE,

MMSYNC_EVENT_MS_SYNC_FOLDER_CONTENTS_COMPLETE,

MMSYNC_EVENT_MS_SYNC_FIRST_EXISTING_FID,

MMSYNC_EVENT_BUFFER_TOO_SMALL,

MMSYNC_EVENT_MS_SYNC_FOLDER_TRIM_COMPLETE,

MMSYNC_EVENT_DB_RESET,

MMSYNC_EVENT_PLAYLIST_ENTRIES_UPDATE,

} mmsync_event_type_t;

Data:

MMSYNC_EVENT_NONE

Indicates there are no events in the client's queue. This event is returned if the client calls

mm_sync_events_get() when no events have occurred.

Delivered when: Never delivered.

Event data: None.

DB tables updated: None (event is not related to database updates).

Copyright © 2015, QNX Software Systems Limited100

Multimedia Synchronizer API

MMSYNC_EVENT_MS_1PASSCOMPLETE

The files pass of synchronization is complete.

The files pass updates the files, folders, and playlists tables with all files (tracks and playlists)

found on the device. Items that used to exist but are no longer on the device are removed.

The mediastore_metadata table is also updated with the synchronizer used, the device's

mountpoint, and the completion time of the files pass (in the last_sync and syncflags

fields). No metadata has been gathered at this point.

Delivered when: The files pass completes.

Event data: The mmsync_sync_data_t structure, which contains:

• The error type (if applicable)

• The synchronization operation ID

DB tables updated: files, folders, playlists, and mediastore_metadata.

MMSYNC_EVENT_MS_SYNCCOMPLETE

The synchronization of the mediastore is complete. All tables are as accurate as possible.

Delivered when: All synchronization passes are complete for the mediastore for which the

synchronization was requested.

Event data: The mmsync_sync_data_t structure, which contains:

• The error type (if applicable)

• The synchronization operation ID

DB tables updated: files, folders, playlists, playlist_entries, audio_metadata (if necessary),

video_metadata (if necessary), photo_metadata (if necessary), genres (if necessary), artists
(if necessary), albums (if necessary), and mediastores.

MMSYNC_EVENT_MS_UPDATE

Database content related to a mediastore has been updated.

Delivered when: The mm-sync service has written new data to the database. This event tells

the client which mediastore the changes are associated with and provides the client with

information on the source of the changes.

An event of this type is delivered following each change in the synchronization pass flag

settings, for each operation ID associated with a specific mediastore.

Event data: The mmsync_ms_update_data_t structure, which contains:

• The number of added files and folders

• The synchronization pass under which any changes were made (flags field)

• The synchronization operation ID

• The timestamp field, which is the same value as the mm-sync timestamp assigned to

the last_sync field of all files entries adjusted during this update

DB tables updated: Depends on which synchronization pass (if any) changed the database.

Database changed outside of synchronization (i.e., flags == 0): files.

Copyright © 2015, QNX Software Systems Limited 101

Multimedia Synchronizer API

Files pass (flags == MMSYNC_SYNC_OPTION_PASS_FILES): files, folders, playlists,

and mediastore_metadata.

Metadata pass (flags == MMSYNC_SYNC_OPTION_PASS_METADATA): files, folders,

audio_metadata (if necessary), video_metadata (if necessary), photo_metadata (if necessary),

genres (if necessary), artists (if necessary), albums (if necessary), and mediastore_metadata.

Playlist pass (flags == MMSYNC_SYNC_OPTION_PASS_PLAYLISTS): files, folders,

playlists, playlist_entries, and mediastore_metadata.

MMSYNC_EVENT_SHUTDOWN

Description: A client requested the mm-sync service to shut down. This event informs other

clients about the shutdown request.

Delivered when: Immediately after receiving the request to shut down but before the shutdown

process begins.

Event data: None.

DB tables updated: None (event is not related to database updates).

MMSYNC_EVENT_SHUTDOWN_COMPLETED

The mm-sync service has finished its shutdown process (following a shutdown request) and

is no longer active. The service must be terminated and restarted to synchronize mediastores

again.

Delivered when: The shutdown process is complete and playback and synchronization have

stopped.

Event data: None.

DB tables updated: None (event is not related to database updates).

MMSYNC_EVENT_MS_SYNCFIRSTFID

During the files pass, the first new file that's playable by mm-sync was found. This event

is delivered so clients can start playback as soon as possible.

Delivered when: The first new playable file has been found and placed in the library, just

after the file entries marked for deletion were removed from the database. This event is

delivered during full, recursive synchronizations as well as directed synchronizations. When

this event is emitted, the receiver knows that all database items are valid.

Event data: The mmsync_first_fid_data_t structure, which contains:

• The fid of the first file

• The synchronization operation ID

• The timestamp field, which is the same value as the mm-sync timestamp assigned to

the last_sync field of all file entries modified by this update

DB tables updated: files and folders.

MMSYNC_EVENT_SYNC_ERROR

An error occurred during synchronization.

Copyright © 2015, QNX Software Systems Limited102

Multimedia Synchronizer API

Delivered when: Various synchronization errors will cause this event to be generated; the

event data indicates the exact cause.

Event data: The mmsync_sync_error_t structure, which contains:

• The error type

• The synchronization operation ID

• Additional information; often, the ID of the folder in which the event occurred

DB tables updated: Depends on the error type.

MMSYNC_EVENT_SYNCABORTED

The synchronization on the mediastore was aborted before completing. This happens when

the device is removed, the synchronization is cancelled by the user, or there's a serious

failure.

Delivered when: The synchronization is stopped on the mediastore before completing

successfully.

Event data: The mmsync_sync_data_t structure, which contains:

• The error type (if applicable)

• The synchronization operation ID

DB tables updated: None (event is not related to database updates).

MMSYNC_EVENT_SYNC_SKIPPED

The synchronization wasn't started automatically on a mediastore. The user can request a

manual synchronization.

Delivered when: A mediastore is inserted and a manual synchronization can be requested.

Event data: None.

DB Tables Updated: mediastores.

MMSYNC_EVENT_MS_SYNC_STARTED

The synchronization has begun on a mediastore.

Delivered when: The synchronization starts on a mediastore.

Event data: The mmsync_sync_data_t structure, which contains:

• The error type (if applicable)

• The synchronization operation ID

DB Tables Updated: mediastores.

MMSYNC_EVENT_MS_2PASSCOMPLETE

The metadata pass of synchronization is complete.

The metadata pass updates only some metadata tables, based on the type of media files

being synchronized. The files table is updated to show that all metadata describing the

media content is now accurate. The mediastore_metadata table is updated to reflect the

completion time of the metadata pass (in the last_sync and syncflags fields).

Copyright © 2015, QNX Software Systems Limited 103

Multimedia Synchronizer API

Delivered when: The metadata pass completes.

Event data: The mmsync_sync_data_t structure, which contains:

• The error type (if applicable)

• The synchronization operation ID

DB tables updated: audio_metadata, video_metadata, photo_metadata, genres, artists,
albums, and mediastore_metadata.

MMSYNC_EVENT_MS_3PASSCOMPLETE

The playlist pass of synchronization is complete.

Information on device playlists is now accurate in the database. The mediastore_metadata
table is updated to reflect the completion time of the playlist pass (in the last_sync and

syncflags fields).

Delivered when: The playlist pass completes.

Event data: The mmsync_sync_data_t structure, which contains:

• The error type (if applicable)

• The synchronization operation ID

DB tables updated: files, folders, playlists, playlist_entries, and mediastore_metadata.

MMSYNC_EVENT_MS_SYNC_PENDING

A synchronization was requested for a mediastore but the operation was put on the pending

(waiting) list because no synchronization threads were available.

Delivered when: After the mediastores table is updated but there are no synchronization

threads available to continue synchronizing the mediastore.

Event data: The mmsync_sync_data_t structure, which contains:

• The error type (if applicable)

• The synchronization operation ID

DB tables updated: mediastores.

MMSYNC_EVENT_MS_SYNC_FOLDER_STARTED

A folder has started synchronization.

Delivered when: The synchronization of a folder has started. On the files pass, this event is

emitted after the folder has been inserted into the database. On the metadata pass, it's

emitted just before the folder contents go through the metadata pass.

Event data: The mmsync_folder_sync_data_t structure, which contains:

• The synchronization operation ID

• The current synchronization pass

• The ID of the folder in which the event occurred

• The number of files, folders, and playlists synchronized in this pass, which is 0 for all

three fields

• The timestamp field, which is set to 0 and not used

Copyright © 2015, QNX Software Systems Limited104

Multimedia Synchronizer API

DB tables updated: folders.

MMSYNC_EVENT_MS_SYNC_FOLDER_COMPLETE

All files in a folder have been synchronized and the subfolders in the folder have been

enumerated.

Delivered when: The nonrecursive synchronization of a folder has completed.

Event data: The mmsync_folder_sync_data_t structure, which contains:

• The synchronization operation ID

• The current synchronization pass

• The ID of the folder in which the event occurred

The structure also contains pass-specific information, as follows:

Files pass: The number of file, folder, and playlist entries added to the database.

Metadata pass: The number of files for which the metadata was changed. The number of

folders and playlists marked as changed is always 0. The timestamp field stores the value

of the last_sync column in the folders table.

Playlist pass: The number of playlists synchronized.

DB tables updated: folders.

MMSYNC_EVENT_MS_SYNC_PRIORITY_FOLDER_STARTED

A priority folder has started synchronization.

Delivered when: The synchronization of a priority folder has started.

Event data: The mmsync_folder_sync_data_t structure, which contains:

• The synchronization operation ID

• The current synchronization pass

• The ID of the folder being synchronized

DB tables updated: folders.

MMSYNC_EVENT_MS_SYNC_PRIORITY_FOLDER_COMPLETE

A priority folder has completed synchronization.

Delivered when: The synchronization of a priority folder, which must be nonrecursive, has

completed.

Event data: The mmsync_folder_sync_data_t structure, which contains:

• The synchronization operation ID

• The current synchronization pass

• The ID of the folder in which the event occurred

• The number of files, folders, and playlists within the indicated folder synchronized in

this pass

DB tables updated: folders.

Copyright © 2015, QNX Software Systems Limited 105

Multimedia Synchronizer API

MMSYNC_EVENT_MS_SYNC_FOLDER_CONTENTS_COMPLETE

The synchronization of all subfolders in a folder is complete.

Delivered when: The recursive synchronization of a folder has completed. This event isn't

emitted for a nonrecursive synchronization of a folder.

Event data: The mmsync_folder_sync_data_t structure, which contains:

• The ID of the folder in which the event occurred

• The current synchronization pass

• The number of subfolders synchronized in this pass

• The number of files and the number of playlists synchronized in this pass, which are

both set to 0 and not used

• The timestamp field, which is set to 0 and not used

• The synchronization operation ID

DB tables updated: folders.

MMSYNC_EVENT_MS_SYNC_FIRST_EXISTING_FID

During the files pass, the first existing file that's playable by mm-sync was found. This event

is delivered so clients can start playback as soon as possible.

Delivered when: The first playable file that's already in the library was found on the

mediastore. This event is delivered during full, recursive synchronizations as well as directed

synchronizations.

Event data: The mmsync_first_fid_data_t structure, which contains:

• The fid of the first file

• The synchronization operation ID

• The timestamp field, which indicates the time that the files pass was started

DB tables updated: None.

MMSYNC_EVENT_BUFFER_TOO_SMALL

The event buffer on the client side is too small to fetch events from mm-sync.

Delivered when: A client requests an event but doesn't have enough room to hold it.

Event data: The mmsync_event_queue_size_t structure, which contains:

• The size (in bytes) of the first queued event

• The size (in bytes) of all queued events

DB tables updated: None.

MMSYNC_EVENT_MS_SYNC_FOLDER_TRIM_COMPLETE

All database entries no longer in a folder have been deleted from the database.

Delivered when: During the files pass, if a folder is found to have been previously

synchronized, this event is emitted after all the items determined to have been removed

from the folder have been deleted from the database.

After this event, users know that any database items shown as being in the folder are valid.

Copyright © 2015, QNX Software Systems Limited106

Multimedia Synchronizer API

Event data: The mmsync_folder_sync_data_t structure, which contains:

• The ID of the folder in which the event occurred

• The current synchronization pass, which is always 1 (for the files pass)

• The number of files, subfolders, and playlists deleted from the folder during this pass

• The timestamp field, which is the start time of the synchronization operation

• The synchronization operation ID

DB tables updated: files, folders, playlists, and playlist_entries.

MMSYNC_EVENT_DB_RESET

All file, metadata, and playlist information has been cleared from the database.

Delivered when: During synchronization, when an Apple device instructs mm-sync to delete

all database contents.

Event data: The mmsync_reset_sync_data_t structure, which contains:

• The synchronization operation ID

• A timestamp value that's set to the mm-sync timestamp assigned to the last_sync fields

of all file entries impacted by the reset operation

DB tables updated: files, playlists, playlist_data, mediastore_metadata, audio_metadata,
video_metadata, ipod_metadata, genres, artists, and albums.

MMSYNC_EVENT_PLAYLIST_ENTRIES_UPDATE

The number of playlist entries queried for updates has reached the configured limit on how

many can be queried before an event notification is sent. If any playlist entries were updated

in the database, the MMSYNC_EVENT_MS_UPDATE event is also sent.

Delivered when: After the n th query for a playlist entry update has been issued, where n

is defined in the mm-sync configuration file.

Event data: The mmsync_pl_entries_sync_data_t structure, which contains:

• The synchronization operation ID

• The ID of the playlist being synchronized

• The number of playlist entries queried for an update

• The number of entries that will be checked for an update

• The OID of the last playlist entry confirmed to be in the database

DB tables updated: playlist_entries.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited 107

Multimedia Synchronizer API

mmsync_first_fid_data_t

Data forMMSYNC_EVENT_MS_SYNCFIRSTFID andMMSYNC_EVENT_MS_SYNC_FIRST_EXISTING_FID

events

Synopsis:

#include <mmsync/event.h>

typedef struct s_mmsync_first_fid_data {

uint64_t fid;

uint64_t timestamp;

uint32_t operation_id;

uint32_t count;

} mmsync_first_fid_data_t;

Data:

uint64_t fid

The file ID of the first media file synchronized.

uint64_t timestamp

The time when the first media file was synchronized.

uint32_t operation_id

The synchronization operation ID.

uint32_t count

The number of times that the event was sent.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited108

Multimedia Synchronizer API

mmsync_folder_sync_data_t

Data for MMSYNC_EVENT_MS_SYNC_FOLDER_* events

Synopsis:

#include <mmsync/event.h>

typedef struct s_mmsync_folder_sync_data {

uint64_t folderid;

uint32_t pass;

uint32_t num_files;

uint32_t num_folders;

uint32_t num_playlists;

uint64_t timestamp;

uint32_t operation_id;

uint32_t reserved;

} mmsync_folder_sync_data_t;

Data:

uint64_t folderid

The ID of the folder being synchronized.

uint32_t pass

The synchronization pass (one of the MMSYNC_SYNC_OPTION_PASS_* flags).

uint32_t num_files

See documentation for specific event types.

uint32_t num_folders

See documentation for specific event types.

uint32_t num_playlists

See documentation for specific event types.

uint64_t timestamp

The timestamp value assigned to the last_sync fields of all updated database entries.

uint32_t operation_id

The synchronization operation ID.

uint32_t reserved

Reserved for future use.

Copyright © 2015, QNX Software Systems Limited 109

Multimedia Synchronizer API

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited110

Multimedia Synchronizer API

mmsync_ms_update_data_t

Data for MMSYNC_EVENT_MS_UPDATE event

Synopsis:

#include <mmsync/event.h>

typedef struct s_mmsync_ms_update_data {

uint64_t added_filecount;

uint64_t added_foldercount;

uint32_t operation_id;

uint32_t flags;

uint64_t timestamp;

uint64_t playlist_count;

uint64_t pass_added_filecount;

uint64_t pass_added_foldercount;

uint64_t pass_playlist_count;

uint64_t playlist_item_count;

} mmsync_ms_update_data_t;

Data:

uint64_t added_filecount

The number of files that had information added to the database.

uint64_t added_foldercount

The number of folders that had information added to the database.

uint32_t operation_id

The synchronization operation ID.

uint32_t flags

The synchronization pass (one of the MMSYNC_SYNC_OPTION_PASS_* flags).

uint64_t timestamp

The timestamp value assigned to the last_sync fields of all updated database entries.

uint64_t playlist_count

The number of playlists added/updated in this pass (applicable for the files and playlist

pass; otherwise 0).

uint64_t pass_added_filecount

The total number of files added/updated in this pass (accumulative).

Copyright © 2015, QNX Software Systems Limited 111

Multimedia Synchronizer API

uint64_t pass_added_foldercount

The total number of folders added/updated in this pass (accumulative).

uint64_t pass_playlist_count

The total number of playlists added/updated in this pass (accumulative).

uint64_t playlist_item_count

The number of playlist items added/updated in this pass (applicable for the playlist pass;

otherwise 0).

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited112

Multimedia Synchronizer API

mmsync_pl_entries_sync_data_t

Data for MMSYNC_EVENT_PLAYLIST_ENTRIES_UPDATE event

Synopsis:

#include <mmsync/event.h>

typedef struct s_mmsync_pl_entries_sync_data {

uint32_t operation_id;

uint64_t plid;

uint64_t last_oid;

uint32_t count;

uint32_t total;

} mmsync_pl_entries_sync_data_t;

Data:

uint32_t operation_id

The synchronization operation ID.

uint64_t plid

The ID of the playlist being synchronized.

uint64_t last_oid

The ID of the last valid playlist entry in the database.

uint32_t count

The number of playlist entries updated.

uint32_t total

The total number of playlist entries to update.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited 113

Multimedia Synchronizer API

mmsync_reset_sync_data_t

Data for MMSYNC_EVENT_MS_SYNC_DB_RESET event

Synopsis:

#include <mmsync/event.h>

typedef struct s_mmsync_reset_sync_data {

uint64_t timestamp;

uint32_t operation_id;

uint32_t reserved;

} mmsync_reset_sync_data_t;

Data:

uint64_t timestamp

The timestamp value assigned to the last_sync fields of all updated database entries.

uint32_t operation_id

The synchronization operation ID.

uint32_t reserved

Reserved for future use.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited114

Multimedia Synchronizer API

mmsync_sync_data_t

Data for many MMSYNC_EVENT_MS_* events

Synopsis:

#include <mmsync/event.h>

typedef struct mmsync_sync_data {

uint32_t operation_id;

uint32_t error;

} mmsync_sync_data_t;

Data:

uint32_t operation_id

The synchronization operation ID.

uint32_t error

An MMSYNC_SYNC_ERROR_* constant, for MMSYNC_EVENT_SYNCABORTED events only.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited 115

Multimedia Synchronizer API

Error information

The mm-sync API defines an enumeration for listing error types and a structure for holding error

information.

For mm-sync events that indicate an error, the associated mmsync_event_t structure has its type field

set to MMSYNC_EVENT_SYNC_ERROR and its data field refers to an mmsync_error_t structure. This

second structure contains the error type, synchronization operation ID, and other information such as

the ID of folder where the error occurred.

Copyright © 2015, QNX Software Systems Limited116

Multimedia Synchronizer API

mmsync_sync_error_t

Data for MMSYNC_SYNC_ERROR_* errors

Synopsis:

#include <mmsync/event.h>

typedef struct mmsync_sync_error {

uint32_t type;

uint32_t operation_id;

uint32_t param;

uint32_t reserved;

} mmsync_sync_error_t;

Data:

uint32_t type

The error type (an MMSYNC_SYNC_ERROR_* constant).

uint32_t operation_id

The synchronization operation ID.

uint32_t param

Additional information; often, the ID of the folder in which the error occurred.

uint32_t reserved

Reserved for future use.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited 117

Multimedia Synchronizer API

mmsync_sync_error_type_t

mm-sync error types

Synopsis:

#include <mmsync/event.h>

typedef enum mmsync_sync_error_type {

MMSYNC_SYNC_ERROR_NONE = 0,

MMSYNC_SYNC_ERROR_MEDIABUSY,

MMSYNC_SYNC_ERROR_READ,

MMSYNC_SYNC_ERROR_NETWORK,

MMSYNC_SYNC_ERROR_UNSUPPORTED,

MMSYNC_SYNC_ERROR_USERCANCEL,

MMSYNC_SYNC_ERROR_NOTSPECIFIED,

MMSYNC_SYNC_ERROR_LIB_LIMIT,

MMSYNC_SYNC_ERROR_FOLDER_LIMIT,

MMSYNC_SYNC_ERROR_DATABASE,

MMSYNC_SYNC_ERROR_FOLDER_DEPTH_LIMIT,

MMSYNC_SYNC_ERROR_DB_LIMIT,

MMSYNC_SYNC_ERROR_FOLDER_NONMEDIA_LIMIT,

MMSYNC_SYNC_ERROR_FOLDER_MEDIA_LIMIT,

MMSYNC_SYNC_ERROR_MEMORY_ALLOCATION,

} mmsync_sync_error_type_t;

Data:

MMSYNC_SYNC_ERROR_NONE

No synchronization error.

Delivered when: Never (placeholder).

Event data: None.

DB tables updated: None.

MMSYNC_SYNC_ERROR_MEDIABUSY

The media was busy and the synchronization wasn't allowed to start on it because of

concurrency rules.

Delivered when: The synchronization should have started (but didn't) on a device.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

DB tables updated: mediastores.

Copyright © 2015, QNX Software Systems Limited118

Multimedia Synchronizer API

MMSYNC_SYNC_ERROR_READ

A read error prevented the device from being synchronized. This can be caused by a scratched

disc, for example.

Delivered when: The synchronization fails because of a read error.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

DB tables updated: mediastores.

MMSYNC_SYNC_ERROR_NETWORK

A network error occurred during the synchronization. This can be caused by a metadata

lookup that couldn't access the network.

Delivered when: The synchronization experiences a network error.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

DB tables updated: mediastores.

MMSYNC_SYNC_ERROR_UNSUPPORTED

The type of mediastore to synchronize isn't supported by mm-sync.

Delivered when: The mm-sync service starts the synchronization but determines the device

is unsupported.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

DB tables updated: mediastores.

MMSYNC_SYNC_ERROR_USERCANCEL

The synchronization was stopped by a client request.

Delivered when: A client requests to stop the synchronization.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

DB tables updated: mediastores.

MMSYNC_SYNC_ERROR_NOTSPECIFIED

A nonspecified error occurred. This error isn't classified by other error types.

Delivered when: Any time during synchronization.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

DB tables updated: None.

Copyright © 2015, QNX Software Systems Limited 119

Multimedia Synchronizer API

MMSYNC_SYNC_ERROR_LIB_LIMIT

The files pass of synchronization reached a configuration limit; no more entries may be

added to the files table.

Delivered when: When the maximum number of database entries has been reached during

the files pass.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

• The limit that the mediastore reached (in param)

DB tables updated: None.

MMSYNC_SYNC_ERROR_FOLDER_LIMIT

The files pass of synchronization reached a configuration limit; no more entries may be

added to the folders table.

Delivered when: When the maximum number of folder items presented to mm-sync has

reached the limit on how many folders can be scanned for synchronization.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

• The ID of the folder in which the limit was reached (in param)

DB tables updated: None.

MMSYNC_SYNC_ERROR_DATABASE

The synchronization encountered a database problem.

Delivered when: A database operation fails during synchronization.

Event data: TBD.

DB tables updated: None.

MMSYNC_SYNC_ERROR_FOLDER_DEPTH_LIMIT

The mm-sync service skipped synchronizing a folder to avoid exceeding the configured

maximum folder depth.

Delivered when: The first time mm-sync skips a folder because it has reached the configured

maximum folder depth.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

• The ID of the folder in which the limit was reached (in param)

DB tables updated: None.

MMSYNC_SYNC_ERROR_DB_LIMIT

The maximum database size has been reached; no further data may be added to the files
and playlist tables.

Copyright © 2015, QNX Software Systems Limited120

Multimedia Synchronizer API

Delivered when: When mm-sync notices that the maximum database size has been reached

and stops the synchronization to keep the database size manageable.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

DB tables updated: None.

MMSYNC_SYNC_ERROR_FOLDER_NONMEDIA_LIMIT

The files pass of synchronization reached the limit for nonmedia files; no entries for this

folder will be added to the files table.

Delivered when: When the maximum number of nonmedia items in a folder has reached the

configured limit.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

• The ID of the folder in which the limit was reached (in param)

DB tables updated: None.

MMSYNC_SYNC_ERROR_FOLDER_MEDIA_LIMIT

The files pass of synchronization reached the limit for media files; no more entries for this

folder will be added to the files table.

Delivered when: When the maximum number of media items in a folder has reached the

configured limit.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

• The ID of the folder in which the limit was reached (in param)

DB tables updated: None.

MMSYNC_SYNC_ERROR_MEMORY_ALLOCATION

The service had problems allocating memory.

Delivered when: When the service can't allocate sufficient memory during a synchronization.

Event data: The mmsync_sync_error_t structure, which contains:

• The synchronization operation ID

DB tables updated: None.

Library:
mmsyncclient

Copyright © 2015, QNX Software Systems Limited 121

Multimedia Synchronizer API

Index

A

arguments 23

mmsyncclient 23

artwork extraction 9

C

ChangedFilesHaveConstantId element 61

command syntax 21, 23

mm-sync 21

mmsyncclient 23

commands 24

mmsyncclient 24

ConfigurableMetadata element 47

Configuration element 42

configuration file 42

contents 42

structure 42

XML elements 42

configuring mediastore synchronizers 49

configuring mm-sync 41

controlling mm-sync behavior 41

creating mediastore databases 34

current_pass field 36

D

database cleanup 14

Database element 42

database inconsistencies 40

repairing 40

default configuration file 41

delete files 14

reference removal 14

description 22, 24

mm-sync 22

mmsyncclient 24

directed synchronizations 17

E

extension element 55

extensions element 55

F

files pass 12

filesystem traversal 13

filtering synchronizations by file type 55

foreground merge 15

foreground thread 52

full recursive synchronizations 17

H

handling updated files and playlists 61

I

interrupting synchronizations 38

L

library element 55

Limiting items read 59

loading mediastore databases 19

M

maintaining database persistence 34

managing synchronizations 23

mapping metadata to database fields 47

MaxFolderItems element 59

MaxItems element 57

MaxMediaStoreItems element 59

MaxMediaStoreItemsConfiguration element 60

mediastore detection 9

merge thread 52

metadata pass 12

mm-sync 9–10, 21, 63–64, 88, 93, 95, 116

API 63–64, 88, 93, 95, 116

client interface 64

configuration constants 88

error information 116

event interface 95

media file categories 93

overview 63

command-line utility 21

overview 9

synchronization process, See synchronization process

Copyright © 2015, QNX Software Systems Limited 123

Index

mmsyncclient 23

command-line utility 23

MSS element 49

multimedia synchronization 9

overview 9

N

NonMediaItems element 57

O

optimization for slow devices 15

options 21, 23

mm-sync 21

mmsyncclient 23

overriding default synchronizer ratings 10

P

passes_done field 36

passes_to_do field 36

playlist pass 12

playlist session synchronizers 49

configuring 49

playlists element 55

PLSS element 49

PrescanLimit element 57

Prescanning for nonmedia items 57

priority folder synchronization 38

priority_folder_set action 38

Prune element 50

R

recursive synchronization option 13

reloading mediastore databases 34

repairing folder data 40

return values 29

mmsyncclient 29

S

scope of synchronizations 17

selecting a synchronizer 11

setting a priority folder 38

setting up mm-sync 19

skipping files 53

starting the multimedia synchronizer 19

starting the synchronization engine 21

synced field 36

SyncFileMask element 53

syncflags field 36

Synchronization element 43

synchronization path 13

synchronization process 10–11, 15, 36

optimization 15

overview 10

passes 11

selecting a synchronizer 10

tracking progress 36

Synchronization thread priorities 52

synchronizer ratings 10

synchronizing files 17

synchronizing folders 17

synchronizing mediastores 32

synchronizing multimedia content 32

synchronizing playlists 17

T

tables updated during synchronization 11

Technical support 8

Typographical conventions 6

U

unloading mediastore databases 34

unused metadata 14

reference removal 14

V

verifying folder data 40

W

Working with synchronizations 31

Copyright © 2015, QNX Software Systems Limited124

Index

	Contents
	About This Guide
	Typographical conventions
	Technical support

	Multimedia Synchronization Overview
	The synchronization process
	Synchronizer selection
	Synchronization passes
	Mediastore filesystem traversal
	Database cleanup
	Optimization of synchronization for slow devices

	Full, directed, and file synchronizations

	Setting up the Multimedia Synchronizer Environment
	mm-sync command line
	mmsyncclient command utility

	Working with Synchronizations
	Synchronizing media content from applications
	Maintaining database persistence

	Tracking synchronization progress
	Setting a priority folder
	Repairing database inconsistencies

	Configuring Mediastore Synchronization
	Configuration file contents
	The <Configuration> element
	The <Configuration>/<Database> element
	The <Configuration>/<Database>/<Synchronization> element
	The <Configuration>/<Database>/<Synchronization>/<ConfigurableMetadata> element
	The <Configuration>/<Database>/<Synchronization>/<MSS> element
	The <Configuration>/<Database>/<Synchronization>/<PLSS> element
	The <Configuration>/<Database>/<Prune> element

	Setting synchronization thread priorities
	Skipping files based on their names
	Filtering synchronization by file type
	Prescanning for nonmedia items
	Limiting the number of items read
	Maintaining constant IDs for updated files and playlists

	Multimedia Synchronizer API
	Client interface
	Client interface constants
	mm_sync_cancel()
	mm_sync_connect()
	mm_sync_control()
	mm_sync_debug_get()
	mm_sync_debug_set()
	mm_sync_disconnect()
	mm_sync_resume()
	mm_sync_start()
	mm_sync_status_get()
	mm_sync_status_get_bydbname()
	mm_sync_status_get_byid()
	mm_sync_status_get_dbname()
	mm_sync_suspend()
	mmsync_hdl_t
	mmsync_status_t

	Configuration settings
	Configuration constants

	Media file categories
	mm_ftypes_t

	Event interface
	mm_sync_events_get()
	mm_sync_events_register()
	mmsync_event_queue_size_t
	mmsync_event_t
	mmsync_event_type_t
	mmsync_first_fid_data_t
	mmsync_folder_sync_data_t
	mmsync_ms_update_data_t
	mmsync_pl_entries_sync_data_t
	mmsync_reset_sync_data_t
	mmsync_sync_data_t

	Error information
	mmsync_sync_error_t
	mmsync_sync_error_type_t

	Index

